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Abstract
Computer users working with large visual documents,
such as large layouts, blueprints, or maps perform tasks
that require them to simultaneously access overview in-
formation while working on details. To avoid the need
for zooming, users currently have to choose between us-
ing a sufficiently large screen or applying appropriate
visualization techniques. Currently available hi-res
“wall-size” screens, however, are cost-intensive, space-
intensive, or both. Visualization techniques allow the
user to more efficiently use the given screen space, but in
exchange they either require the user to switch between
multiple views or they introduce distortion.

In this paper, we present a novel approach to simultane-
ously display focus and context information. Focus plus
context screens consist of a hi-res display and a larger
low-res display. Image content is displayed such that the
scaling of the display content is preserved, while its reso-
lution may vary according to which display region it is
displayed in. Focus plus context screens are applicable to
practically all tasks that currently use overviews or fish-
eye views, but unlike these visualization techniques, fo-
cus plus context screens provide a single, non-distorted
view. We present a prototype that seamlessly integrates
an LCD with a projection screen and demonstrate four
applications that we have adapted so far.
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INTRODUCTION
Faster computers, inexpensive memory, and large storage
have brought the ability to work with larger amounts of
information to the computer user. While computational
power and storage have increased rapidly over the past

few years, the screen size and resolution available to con-
sumers has not. This is an issue when users work with
large visual objects, where overall structure is as impor-
tant as detail information for getting the task accom-
plished.
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Figure 1: Focus plus context screens consist of
low-res regions and hi-res regions. Image content
displayed across regions preserves its scaling,
while its resolution changes.

Designers working in the print industry, for example,
have to make sure that the hardcopies of their layouts
look perfect, whether they are viewed from a distance or
close-up. Because print offers a much higher resolution
than computer screens, examination of all possible facets
of the layout via a computer screen involves a substantial
amount of zooming. Similar needs for zooming occur
when architects use a CAD program to edit blueprints,
when radiologists analyze X-ray images on the screen, or
when people examine a large city map on their computer
screens. In all these cases, the display becomes the bot-
tleneck of the computer systems.

When a user’s display is not able to show the number of
pixels required for displaying the entire content at the
desired level of detail, the users can navigate the display



to acquire the information sequentially. Additional navi-
gation means additional user effort, which motivated
researchers to explore other solutions to the problem.
One approach involves replacing the current screen with
a larger screen capable of displaying the required number
of pixels. Another approach is to provide an appropriate
visualization technique that allows fitting the required
data into a smaller screen by reducing the space allocated
for irrelevant information. In the following two sections,
we will look at how existing display technologies and
visualization techniques deal with these problems.

Related work in large hi-res displays
We know of no technology that allows production of one
piece, high-quality displays of arbitrary size. Proposed
techniques typically involve combining multiple smaller
displays into a single large display of high pixel count.

One common solution is to connect two or more com-
puter monitors to a single computer, as supported by cur-
rent operating systems, such as Microsoft Windows. In
this setup, all connected monitors form a single logical
display. This display allows windows to be moved across
display borders and large windows to span multiple dis-
plays. However, Grudin [8] observed that the visible gap
between individual monitors discouraged users from hav-
ing windows span multiple displays. His study suggests
that users instead use additional monitors to separate
windows belonging to different tasks.

In order for large displays to overcome this effect, a sub-
stantial amount of research has been invested in the crea-
tion of seamlessly tiled display systems [6]. Several solu-
tions for avoiding the visible seams have been proposed,
including the integration of up to four identical LCDs by
butting them together into a single large LCD (a 9-mega-
pixel display by IBM1,), the construction of video walls
by assembling back projection modules with small bor-
ders2, as well as a series of research prototypes evolving
around tiled hi-res projection displays [10]. Compound
displays composed of multiple display units surrounding
the user have been used in virtual reality, such as flight
simulation [15], and in immersive environments, such as
the CAVE [4]. These proposed solutions are still cost-
intensive, space-intensive, or both, which has prevented
these technologies from reaching the mass market.

Besides this work, which attempts to obtain large homo-
geneous displays, some research has been done in hybrid
display systems. In the context of computer supported
cooperative work, multiple displays have been combined
loosely in order to provide users with personal space as
well as shared workspace. I-LAND [23] gives users a
shared workspace by providing a large projected area that
users can interact with and use for collaboration. Jun
Rekimoto’s [19] augmented surfaces project allows note-

1 http://www.research.ibm.com/resources/news/20010627_display.shtml
2 http://www.panasonic.com/medical_industrial/11-16-00.asp

books to overlap the projection space and permits users to
drag material between the notebook screen and the
shared projection area. However, users of the system re-
ported that the disproportionate scaling between the
notebooks and the projection area was distracting.

Feiner proposed a hybrid display combining a semi-
transparent head-mounted display with a conventional
CRT monitor [5] (see [2] for more recent work on this
track). This display used the monitor to show a selected
portion of a larger X-Windows desktop, while the low-res
head-mounted display gave an overview of the same
desktop. In the overview, the image displayed by the gog-
gles continued the monitor image virtually into the room.
This solution, however, was limited by the lag of the
head tracking apparatus that was required for aligning
the goggles and the monitor. This lag caused the image
content displayed across both displays to be temporarily
disrupted whenever the user moved his or her head.

Related work in visualization techniques
Research in visualization techniques has resulted in
methods for fitting more relevant data onto a given
screen by reducing the space allocated for irrelevant in-
formation. Plaisant [17] and more recently Olston and
Woodruff [16] provide overviews of the various types of
visualization techniques in use.

The most prominent techniques for reducing navigation
overhead are overview plus detail and fisheye views
[7,3]. Overview plus detail visualizations [13] use two
distinct views: one showing a close up and the other
showing the entire document. While this technique helps
users to orient themselves in large spaces, the drawback
of this approach is that it requires users to visually switch
back and forth between the two distinct views and to re-
orient themselves within the view every time they do so.

By using non-linear scaling, focus plus context visualiza-
tion techniques, such as fisheye views [7,3] and Docu-
ment Lens [20] allow users to see one or more selected
focus regions in full detail, while information in the pe-
riphery (the context region) is compressed to occupy less
screen space. The benefit of fisheye views is that they
keep adjacent information together, thereby avoiding the
need for users to explicitly switch between multiple
views. This provides for faster switching between the
detail region and the periphery. The main drawback of
fisheye views is the distortion that they introduce. This
makes them inappropriate for content where proportions
and distances matter. Photographic content, for example,
easily becomes unrecognizable, which limits the applica-
bility of fisheye views to such tasks as visual design.

FOCUS PLUS CONTEXT SCREENS
We propose focus plus context screens (f+c screens), as a
new way of fitting a larger piece of large visual objects
into a display in order to let users save zooming interac-
tions. Focus plus context screens open a new field of re-



search, which—as emphasized by their name—is located
in the intersection between display technology and visu-
alization techniques.

Figure 1 shows the general concept. Focus plus context
screens offer regions of high resolution and regions of
low resolution3. Image contents preserve their scaling,
even when their resolution varies. The geometry of the
displayed content, i.e. the ratio between lengths in the
image, is thereby preserved.

Figure 2: The high-res region in the center of this
focus plus context screen provides users with de-
tail information.

Figure 2 shows a photo of our prototype system display-
ing a map. The focus display is located at the same loca-
tion as in Figure 1, but correct calibration of the display
renders it invisible from a distance. However, the callout
showing a close-up of the border region between the two
resolutions unveils pixels of different sizes.

Focus plus context screens implement regions of different
resolution by combining multiple display units of differ-
ent resolution. Building a focus plus context screen there-

3 The term resolution, measured, for example, in pixels per
inch, determines in how much detail image content can be
displayed. Note that the term resolution is sometimes mis-
used for communicating the number of pixels offered by a
display (e.g. “a resolution of 1024x768 pixels”), which is not
the meaning we refer to when using the term resolution.

fore starts with the choice and configuration of display
hardware. The rest of this paper is outlined as follows: In
the following sections, we will describe the hardware and
software requirements for a focus plus context screens,
the methodologies used for combining them, as well as a
concrete setup. Since software implementations can be
application-specific, we will begin the second half of this
paper with a presentation of the applications we built so
far, followed by a description of the software implemen-
tation. A presentation of early results and a discussion of
the achievements will then conclude the paper.

Requirements
To make sure that users perceive and use focus plus con-
text screens as a single display and avoid the task-
serration effect observed with two-headed displays, it is
crucial to preserve image geometry across displays and
minimize any gaps found on the display surface.

When we refer to geometry preservation, we mean that
the lengths displayed are scaled representatives of the
original image. When this is true, other attributes such as
distances, proportions, and relative size will retain their
fidelity in the system. Two-headed displays, as supported
by MS Windows, for example, do not preserve geometry.
Pixels located across display borders are logically adja-
cent, although on a setup with two monitors these two
pixels are separated by the physical gap between the
monitors.

In addition to preserving the image geometry the result-
ing image should be free of gaps. In display systems pre-
serving image geometry, a visible gap between display
units results in missing image content. While users are
familiar with the fact that displays are finite and that
clipping occurs at the display border, clipping inside the
display space will typically be disrupting. Gaps within
the display area should therefore be avoided.

When users change the angle from which they view the
display, surfaces not located in the same physical plane
can block portions of each other. This effect can also lead
to perceived visible gaps and noticeable misalignment.
This can be avoided if head tracking is used. However,
this can result in the aforementioned lag in displaying
the new images, which in turn distorts the geometry of
the images. To avoid the described drawbacks, display
units should generally be located in the same plane.

Combining multiple display units
Displays to be combined typically have a certain thick-
ness and borders with certain widths and depths (depth
denoting how far the border extends over the display
plane). Figure 3 shows ways of combining two coplanar
screens to form a single display.

Figure 3a shows a configuration that combines the two
displays alongside each other. The benefit of this ar-
rangement is that both display areas are in the same
plane. The drawback of this arrangement is that the gap



between the displays is at least the sum of the border
widths of the two displays. When the display borders are
small, this solution works well.

Figure 3b shows a configuration where one display unit
is located in front of the other. While this setup does not
allow the two displays to be in the same plane, it mini-
mizes the gap between the two displays units. The gap is
now only determined by the border width of the front
display.

a b

Figure 3: Combining two coplanar display units,
such that they are in the same plane (a) or such
that the perceived gap is minimal (b).

The potential of the in-front setup shown in Figure 3b is
less obvious than of the alongside setup. While the in-
front setup looks awkward for two monitors, it becomes
useful for other types of displays. To minimize the gap
and the depth distance, three dimensions have to be
minimized, i.e. thickness of the display in front, border
width of the display in front, and border depth of the dis-
play behind.

For two coplanar displays there exist implementations
that fulfill these requirements. This combination is de-
picted in Figure 4. The shown setup combines a flat
screen monitor in the center with a customized projection
surface surrounding it. The basic idea behind this setup is
that the border of the flat screen monitor is covered with
the projection surface, which in turn is thin enough to
keep the two display planes very close. Our f+c screen
prototype is implemented based on this design, but in
order to make the prototype more space-efficient, we used
an LCD screen as the focus display.

Figure 4: F+c prototype combining a monitor hav-
ing a flat surface with a projection system

The pixels displayed by the video projector and the LCD
are of substantially different sizes, which allows this
combination to achieve high-resolution in the center,
while simultaneously offering a large screen surface (see
Figure 2).

Setting up an f+c screen installation
The setup shown in Figure 4 requires only moderate
modification of a regular office workplace and can be
built with comparably inexpensive off-the-shelf compo-
nents. Figure 5 shows how this is accomplished.

Prior to the modification, the office shown contains a
regular PC workplace with a Windows PC and an SGI
1600SW flat panel monitor (Figure 5a). The flat panel
stays in place and becomes the focus display of our focus
plus context installation. To bring the display planes
closer together, the flat panel’s protruding front cover is
removed, making the LCD completely flat.

Next, the customized projection screen, which consists
mainly a 3x4 foot (90x120cm) piece of white foam core,
is added to our setup (Figure 5b). A hole large enough to
accommodate the entire flat panel display allows the flat
panel to be embedded within the projection screen. The
surfaces of the flat panel display and the projection
screen are aligned in the same plane. The installation
shown uses an antique golden frame to hold the canvas,
which not only allows the projection screen to stand on
the desktop while leaning against the wall, but also gives
the installation a stylish look. To cover the gap between
the two display areas, a paper mask of appropriate size is
used to extend the projection surface across the borders of
the focus display, thereby creating a seamless display
area (Figure 5d).

The projector (initially a portable Sony VPL-XC50, later
a NEC MT 1035) fits conveniently in the space behind
the user (Figure 5c), which makes this installation very
space-efficient. The 8½ feet (approx. 2½ meters) wide
office provides enough projection throw to make the pro-
jection fill the entire 12 square foot projection screen.
Generally, projectors have to be positioned above the
user’s head to keep the user from casting a shadow on the
projection screen (see also Figure 4). One way of accom-
plishing that is by mounting the projector on the ceiling.
In the shown setup, the projector is placed on a shelf on
the opposite side of the office (Figure 5c). To avoid
keystoning, the projection surface is tilted slightly.

In the configuration described so far, the projector not
only projects on the projection screen, but also on the flat
panel monitor. While this overlap is key to achieving the
desired zero-gap integration of the two display areas, it
results in a double image and reflections on the flat panel
display. This effect is avoided by placing a black object
over the respective part of the projection. For this pur-
pose, a simple program that creates a resizable window is
used. After moving the window to the desired position,
all window decorations can be removed by hitting the



window’s freeze button, which leaves the window en-
tirely black. This completes the display installation setup.

a

b
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Figure 5: (a) The workplace prior to the modifica-
tion. (b) The foam core projection screen is
placed around the flat panel display. (c) A projec-
tor is positioned at the opposite side of the office.
(d) A paper mask is added to cover the frame of
the flat panel display.

This resulting setup offers a 3x4 feet (90x120cm) display
area with a seamlessly integrated hi-res region. The focus
display offers 1600x1024 fine pixels, while the context
region provides 1024x768 (minus the removed overlap
region) coarse pixels. In this particular installation, the
resolution in the focus region is 5.1 times bigger than
pixels on the focus display, so that each context pixel
corresponds to about 26 focus pixels. A large hi-res dis-
play with the same surface and the resolution of the focus
region throughout the whole display area would have
around 20.5 mega pixels.

APPLICATIONS AND TASKS ON F+C SCREENS
Provided with this display, the next step is to adapt appli-
cations to it. Before we can understand what applications
benefit from a focus plus context screen, we have to un-
derstand what the strengths and limitations of this novel
display type are. We will analyze f+c screens in compari-
son to other visualization techniques designed to mini-
mize the need for zooming interactions. Figure 6 shows
how f+c screens relate to the visualization techniques
mentioned earlier.

Focus plus context screens combine the advantages of
overview plus detail and fisheyes views. Specifically, f+c
screens provide users with the physical continuity of the
fisheye and the non-distortedness of overview plus detail.
The price is that users lose the possibility to zoom and

pan the focus independently of the context. The focus
region and the context region have become one and the
zoom factor between them (e.g. the 1:5.1 ratio in the case
of our installation) is now fixed. Besides that, there is the
obvious need for additional space for the projection sur-
face and the projector. This limits the applicability of f+c
screens to stationary setups and excludes, for example,
portable computers and palmtops.

overview plus detail

independent views

1

3

2
fisheye

focus plus context display

or
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Figure 6: F+c screens compared to other visuali-
zation techniques designed for saving zooming
interactions.

In order to exploit the benefits of f+c screens, we should
apply them to tasks where users switch between the focus
region and the context region frequently (because this is
where overview plus detail requires users to carry out
additional visual navigation) and where the absence of
distortion is crucial (because this is where fisheyes do not
work properly). How often users switch between focus
and context depends on the task. This will be discussed
later with the applications we actually implemented. Sen-
sitivity to distortion varies from task to task as well. If the
task requires users to compare the lengths of distances or
the sizes of surfaces across image regions, distortion
makes this task difficult. Additionally, images of real-
world objects become difficult to recognize when dis-
torted.

Many types of content fit this model, including represen-
tations of cities (street maps and satellite photos), build-
ings (architectural blueprints, renderings, CAD), inte-
grated circuits and other technical material (drawings or
photos), desktops (real and GUI desktops), biological



data (human skin, X-ray images, anatomy, microscopy),
star and weather maps, large layouts, designs, and pieces
of art (posters, paintings, including zoomable documents
[1]).

Note that all these objects can come in very different rep-
resentations. They can be shown in two dimensions
(drawings) or three (renderings), they can be captured
optically (photographs) or modeled using a computer
(renderings), they can be encoded in a pixel-based (bit-
map) or in a vector-based format (drawing), and they can
be static (photos) or dynamic (videos, animations). The
system displaying them can allow users to browse them
in two (drawing program) or three dimensions (VRML
editor); they may allow editing (image editor) or not (im-
age viewer).

Applications we implemented
We found the following concrete applications most inter-
esting and therefore implemented f+c screen solutions for
them.

Scenario 1 (Editing print products) As mentioned in the
introduction, print typically has a much higher resolution
than computer displays. To obtain a print product that
looks perfect from a distance as well as with a magnify-
ing glass in hand, editors have to work with the print

product in many different zoom levels. On an f+c screen
(Figure 7), editors of print products can work on details
while constantly being aware of each region’s context
and how detail modifications affect the overall impres-
sion. We implemented this scenario on the Linux operat-
ing system, using the available image editing and layout
applications. As a side effect, the system provides users
with large physical space for spreading out information,
which Henderson and Card [9] found to be important.

Scenario 2 (Finding the shortest path on a map) When
browsing large images, users zoom in and out to inspect
objects of different scales, to compare distant objects, and
to gain orientation. If the user’s task is to find the short-
est path from a residential address in one city to a resi-
dential address in another city, users need to zoom in to
be able to read street addresses, recognize one-way
streets, etc. They also need to zoom out to get an over-
view of the highways connecting the two cities. On an
f+c screen (Figure 2), this navigation is simplified be-
cause users can constantly see a large region of the map,
while simultaneously having access to street-level infor-
mation in the focus display. Since f+c screens preserve
geometry, comparison of distances is straightforward,
even across display borders.

Figure 7: Working with large images and drawings on an f+c screen under Linux.



Scenario 3 (Videoconferencing and teleteaching) There
are many situations where a video presentation simulta-
neously involves objects of incompatible scales. In our
demo scenario shown in Figure 8, a person describes a
small robot module she is holding. While it would be
difficult to convey the speaker’s gestures as well as a de-
tailed view of the robot using the limited resolution of a
single TV camera, f+c screens allow all this information
to be displayed. On an f+c screen, viewers can simulta-
neously see the speaker and a detailed view of the object
as well as gestures connecting them. An overview plus
detail solution involving a separate “document” camera
for the object would cause the relation between the
speaker’s gestures and the presented object to be lost. As
a side effect, the large screen of our f+c installation al-
lows the presenter and the objects to be seen at their ac-
tual size, which helps the viewer understand the scale of
the presented content.

Figure 8: A videoconference partner displayed on
an f+c screen. The higher resolution in the focus
region allows communicating relevant details.

Scenario 4 (Simulation games) Games that immerse the
user in virtual worlds have a single focus of attention.
The position of the user’s persona in the virtual world
determines which objects or game characters are visible,
accessible, and potentially dangerous. At the same time,
these games often require the user to make decisions that
require knowledge of the world around them. In sports
games, users have to be aware of the position of other
players on the field; in real-time strategy games, users
continuously make decisions based on the opponent’s
activities on a large battlefield. Similar focus plus context
effects occur in 3D simulation games, such as the first
person shooter Unreal Tournament (http://www.unreal-
tournament.com), shown in Figure 9. Users can pick up
or shoot objects only when they are in the crosshair sec-
tion in the middle of the screen. The crosshair never
moves, so instead of moving their eyes to objects of inter-
est, users continuously pan objects of interest into the
crosshair region. This model causes the user to continu-
ously fixate on the screen center. The f+c screen provides

a high-resolution picture in the region surrounding the
crosshair, while providing a much larger peripheral im-
age in the context area. The fact that the context area is
low-resolution does not affect the user’s experience, be-
cause human vision in the peripheral regions is also lim-
ited to low resolution [18].

For all four scenarios, there are systems that employ
overview plus detail techniques. However, since these
tasks require users to switch between views frequently,
we expect f+c screens to be able to boost user’s perform-
ance. Also, in all four scenarios, geometry preservation is
important, which renders distorting techniques such as
fisheye views inappropriate.

Figure 9: F+c screens allow players of 3D games
(Unreal Tournament) to perceive their surround-
ing through peripheral vision.

How we implemented these applications
The Gnome Desktop, running on a Virtual Network Com-
puting (VNC) XWindows display (http://www.uk.
research.att.com/vnc) is shown in Figure 10. For this
setup, a VNC server runs on a remote Linux machine to
create a 5228x3921 pixel frame buffer, which is the reso-
lution that the display would offer if it were all hi-res.
The two physical displays of the f+c screen are connected
to a dual-headed Windows PC. This PC runs two in-
stances of VNC viewer that transfer the content from the
VNC server over the network. The context display uses
the “scale” option (a feature currently only available in
the Windows version of VNCviewer) to scale the frame
buffer down by 5.1 (= 97/19 ratio), representing the size
ratio between focus and context pixels. Since VNC scales
by averaging pixel colors (filtering), the image informa-
tion is preserved as well as is possible. The resulting
1024x768 pixel-sized window holds the entire virtual
desktop and is fully interactive. Dragging this VNC win-
dow into the projector display increases the size of its
pixels, which compensates for the scaling process. The
focus display uses a VNC viewer as well, but without the
scaling. The virtual frame buffer is bigger than the physi-



cal display, so the VNC viewer provides scrollbars to pan
around the image. Using the scrollbars, the focus display
is panned until focus and context images line up. Both
VNC viewers are now switched to full screen mode, so
that the Linux desktop fills the display.

app

focus

context
input

server

cli
p

scale

viewer

viewer

Figure 10: Running Linux on F+c screens via
VNC

This setup is fully functional, i.e. it allows running arbi-
trary XWindows applications. Windows can be dragged
around seamlessly across display regions. We success-
fully ran several applications including Star Office (office
productivity application), gimp (image processor), Net-
scape (web browser), and several Linux tools. Due to
several optimization techniques, such as selective refresh,
VNC updates window content at a reasonable speed and
small windows can be moved in real time. Redrawing a
full screen window, however, can require up to a couple
of seconds. We are working on improving this by creat-
ing a single-machine version. We have also started ex-
perimenting with implementations based on a single
graphics card that could run both displays. Nonetheless,
the fact that the virtual frame buffer is about ten times
bigger than a normal PC display limits the achievable
speed when applications are stretched to fill most of the
screen.

In situations involving panning a full-screen image, a
full-resolution bitmap would involve an unwieldy amount
of memory. An efficient solution might involve creating
different views of the content suited to the individual
resolutions and area coverage for each display. If this is
supported, each view can be generated directly by a sepa-
rate application. The navigation on each of the views has
to be coordinated in order to preserve geometry of con-
tent displayed across display borders. We will use the
term coupled views to refer to this type of setup. The
three f+c implementations shown in Figure 2, 8, and 9
are based on coupled views, which allows them to run at
the same speed as they would on a normal PC display.

There are several different ways of obtaining coupled
views, e.g. by using applications that allow a single docu-
ment to be viewed in multiple windows, such as Adobe
Photoshop or the Microsoft Office programs. The f+c
scenario shown in Figure 2 is based on two image
viewers running on different networked machines. Figure
11 shows how this works. The image viewer (ACDsee,

http://www.acdsystems.com) uses a “nearest neighbor”
approach to zoom images, which would introduce unde-
sired image artifacts. Additionally, the source image for
the context display would be larger than necessary. To
obtain high-quality output, source images are scaled off-
line using Adobe Photoshop. A full-resolution focus ver-
sion and a scaled-down context version of the image are
saved to disk. An instance of ACDsee is run on each net-
worked PC; one of them drives the focus display, while
the other one drives the context screen. The images are
aligned manually and the viewers are switched to full-
screen mode.

To allow users to pan within the images, the views must
now be coupled. To preserve the image’s geometry, both
images have to be panned in parallel, but at different
speeds. To achieve this, the input from the user is trans-
mitted to both viewer instances and is scaled correspond-
ing to the scaling factor of the bitmaps. In our installa-
tion, for example, a 1-pixel pan in the context display
accompanies a 5 to 6 pixel pan in the focus image. To
accomplish forking and scaling of input events, we wrote
the software tool mouseFork. MouseFork receives mouse
events from the mouse/trackball device, duplicates them,
scales them, and sends them across the net to each dis-
play application. MouseFork also replaces the hand tool
provided by the individual image viewers with a naviga-
tion method that is more convenient for navigating in
large images. Panning across large distances with a hand
tool requires users to grab the plane (mouse down), pan it
(mouse move), release it (mouse up), and to go back
(mouse move), to avoid running into the limits of the
client screen. MouseFork converts the single stream of
mouse move events generated by the trackball into a se-
ries of such hand tool operations, so that the user can
operate the system by simply rolling the trackball.
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.gif
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Figure 11: Running an image view at full speed

We used this viewer setup to explore several large images
such as a 13,800x12,000 pixel satellite image of San
Francisco, a 15,000x15,000 pixel map of London, a
10,000x 30,000 pixel Mandelbrot images, as well as a
series of technical drawings, renderings, and circuit lay-
outs. The viewer runs smoothly and there is no perceiv-
able lag between the two display units.



The teleconferencing scenario shown in Figure 8 is still
in an experimental stage. It uses forked views as well,
which makes it similar to the image viewer setup, but
since the user has no means to navigate the shown image,
there is no transmission and forking of navigation events.
Synchronization between views is achieved by using two
piggybacked cameras to perform capture, i.e. the cou-
pling between the two views (panning only, so far) is
done mechanically. Note that it is also possible to imple-
ment the entire teleconferencing/teleteaching setup en-
tirely with analog technology, i.e. by connecting one ana-
log camera to an analog focus monitor and another one to
the analog input of the projector.

The last of our four scenarios, the 3D game shown in
Figure 9 is implemented using coupled views, but in this
case, the coupling is supported by the game itself. The
setup is done in three steps. First, the game allows play-
ers to automatically follow another player in a networked
game using “spectator mode” and to look through this
player’s virtual eyes using the command “behindview 0”.
Using this feature, the view shown on the context display
can be synchronized with the view on the focus display.
Second, views are calibrated so that their centers (marked
with a crosshair) are aligned. This is done by running the
game on the projector machine in window mode (instead
of fullscreen mode), which allows the window to be
moved around until its crosshairs meets the crosshair of
the focus display. Third, in order to calibrate scaling, the
computer running the context display is given a wider
view, by setting its “field of view” variable to a larger
value. This completes the setup. While it is possible to
run this game on two machines, we used a three-machine
setup (one machine for running the game and two “spec-
tators” to generate the views) to better synchronize views.
The necessity for this adaptation did not emerge from
network lag, but from the fact that Unreal sends update
events to spectators only when the player’s movements
have exceeded a certain tolerance. Using two spectators
applies the same lag to both displays and thereby gets
them synchronized. The game runs at full speed and is
fully playable.

EARLY RESULTS
Our prototype is currently set up in the personal office of
one of the authors at Xerox PARC, which allows us to
continuously experiment with the system, to demo it fre-
quently, and to let other researchers try it out. Over the
past six weeks, we demonstrated the system to about sev-
enty of our colleagues; at least fifteen of them tried it out
themselves. We let them experiment with the Linux setup
and several applications on top of it (including Star Of-
fice, the Gimp, Netscape, etc.), as well as with the image
viewer (allowing them to browse a satellite image of San
Francisco, a London map, and a fractal). Some of our
colleagues also tried out our adaptation of Unreal Tour-
nament. Listed below are some of the impressions of sev-
eral of our colleagues who used the f+c screen.

The Linux implementation was the first one that we had
up and running. It received a lot of feedback and inspired
many great suggestions, including the three setups that
we later implemented using coupled views. Its support
for working with large documents was widely appreci-
ated. Despite the fact that our f+c screen actually displays
fewer physical pixels than the two-headed SGI LCD set-
ups that some of our colleagues use, the display was gen-
erally perceived as providing “lots of space”. The large
screen was judged especially useful in combination with
the high panning speed of the image viewer, which re-
ceived a great response especially with the San Francisco
satellite image. We adapted the 3D game only very re-
cently, but the few people who tried it described the addi-
tional resolution in the focus region as beneficial.

Practically all our testers immediately reflected on how
an f+c screen would affect their daily work at PARC.
Their feedback varied based on the documents and tasks
their daily work involves. The most enthusiastic feedback
came from people in our media group (MARS) and in the
Research in Experimental Design group (RED). Both
groups work with large visual objects, such as posters,
design sketches, collections of photographs, etc. Hard-
ware designers also appreciated the display’s capability
of showing large construction drawings. Two of our col-
leagues expressed interest in using an f+c screen for
managing large websites or network plans. On the other
hand, the display generated only limited interest among
those users who primarily work with text, especially in
program code editing tasks. This feedback is not surpris-
ing, when taking into account that regular-sized text be-
comes unreadable when moved to the context region.
Users working with text with an emphasis on layout,
such as the people in the media group, however, judged
f+c screens as a desirable enhancement of their work
environment.

FUTURE WORK AND CONCLUSIONS
In the future, we plan to work in three major directions.
We are currently setting up an experiment comparing f+c
screens with overview plus detail views with respect to a
chip design task. We also plan to experiment with f+c
screens in multi-user applications, such as walls or tables
with multiple embedded focus displays. Furthermore, we
planning improvement to the applicability of f+c screens
to text-based applications by applying selected visualiza-
tion techniques, such as Thumbnails [24].

While large hi-res displays match all the usability char-
acteristics of f+c screens plus offering high resolution
throughout the entire screen surface, f+c screens are
more feasible. They are more than an order of magnitude
less expensive than a comparable 20-megapixel display
based on tiled projections. Equally important, f+c screens
require substantially less space, which allows them to be
set up in normal offices settings. Today, two-headed sys-
tems are in common use, but as dropping prices currently



bring projectors to the mass market [14], focus plus con-
text screens offer an alternative for users working with
visual content, such as designers or architects.

In this paper, we presented a new means for supporting
users working with large visual content. By combining
visualization techniques with a new type of display setup,
f+c screens achieve characteristics expected to outper-
form existing visualization techniques. While overview
plus detail visualizations require users to switch between
multiple views, focus plus context screens allow users to
simultaneously keep track of context information via pe-
ripheral vision. Since f+c screens do not distort display
content, they are applicable to situations where fisheye
views cannot be used.
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Abstract:  Drag-and-pop and drag-and-pick are interaction techniques designed for users of pen- and touch-
operated display systems. They provide users with access to screen content that would otherwise be impossible 
or hard to reach, e.g., because it is located behind a bezel or far away from the user. Drag-and-pop is an exten-
sion of traditional drag-and-drop. As the user starts dragging an icon towards some target icon, drag-and-pop 
responds by temporarily moving potential target icons towards the user’s current cursor location, thereby allow-
ing the user to interact with these icons using comparably small hand movements. Drag-and-Pick extends the 
drag-and-pop interaction style such that it allows activating icons, e.g., to open folders or launch applications. In 
this paper, we report the results of a user study comparing drag-and-pop with traditional drag-and-drop on a 15’ 
(4.50m) wide interactive display wall. Participants where able to file icons up to 3.7 times faster when using the 
drag-and-pop interface. 
 

Keywords: Drag-and-drop, drag-and-pick, interaction technique, pen input, touchscreen, heterogeneous display. 
 
 

1 Introduction 
With the emergence of pen- and touch-operated per-
sonal digital assistants (PDAs), tablet computers, 
and wall-size displays (e.g., Liveboard, Elrod et al., 
1992; Smartboard, http://www.smarttech.com), 
touch and pen input have gained popularity. Over 
the past years, more complex display systems have 
been created by combining multiple such display 
units. Wall-size touch displays have been combined 
into display walls, such as the DynaWall (Streitz 
2001), or the iRoom Smartboard wall (Johanson, 
2002b). Recent PDAs and tablet computers allow 
connecting additional displays, such as another tab-
let or a monitor in order to extend the device’s inter-
nal display space. 

Touch/pen-operated screens that consist of mul-
tiple display units bring up a new class of input chal-
lenges that cannot always be solved with existing 
techniques, because many of the existing techniques 
were designed for indirect input devices, such as 
mice, track pads, or joysticks. Indirect input devices 
can be used on arbitrary display configurations, be-
cause they can simply be mapped to the respective 
topology (e.g., PointRight, Johanson 2002a). Touch/ 
pen input, however, is based on the immediate 

b
c

dFigure 1: Drag-and-pop
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correspondence between input space and display 
space and thus requires users to adapt their input 
behavior to the physicality of the display system. 
Here are three examples where this can become 
problematic. 



 

 

Scenario 1: External monitors. One or more dis-
play units within a display system may not be 
equipped with a touch or pen sensor. Connecting an 
external monitor to a tablet computer or PDA, for 
example, allows users to see more material, but re-
quires them to use an indirect input device, such as a 
mouse, when interacting with content on the external 
monitor. Since some tablet-specific tasks, such as 
scribbling, are hard to accomplish with a mouse, 
users find themselves continuously switching be-
tween pen and mouse. 

Scenario 2: Interactions across display units. 
Some interaction techniques, such as drag-and-drop, 
require users to interact with two or more icons in a 
single pen-down interaction. If these icons are dis-
tributed across physically separate pen/touch input 
display units, users first have to bring all involved 
icons to the same display unit, a potentially time-
consuming activity (Figure 2a-c). 

Scenario 3: Bridging long distances. Accessing 
icons located far away from the user, e.g., on the 
opposite side of a 15’ DynaWall, requires users to 
physically walk over, the time for which may in 
some circumstances increase linearly with distance 
(Guiard et at, 2001). In addition, drag interactions 
get more error-prone with distance, because users 
drop objects accidentally when failing to continu-
ously keep the pen tip in contact with the display 
surface (Rekimoto 1997). 

2 Drag-and-pop & drag-and-pick 
Drag-and-pop and drag-and-pick are interaction 
techniques that address these issues. We will begin 
by giving an overview; more detailed descriptions of 
both techniques can be found in Section 4. 

Drag-and-pop extends traditional drag-and-drop 
as illustrated by Figure 1. (a) The user intends to 
delete a Word memo by dragging it into the recycle 
bin. (b) As the user starts dragging the memo’s icon 
towards the recycle bin, icons that are of compatible 
type and located in the direction of the user’s drag 
motion “pop up”. This means that for each of these 
icons a link icon is created (tip icon) that appears in 
front of the user’s cursor. Tip icons are connected to 
the original icon (base icon) using a rubber band. 
(c) The user drags the memo over the recycle bin 
and releases the mouse button. The recycle bin ac-
cepts the memo. Alternatively, the user could have 
dropped the memo over the word processor or the 
web browser icon, which would have launched the 
respective application with the memo. (d) When the 
user drops the icon, all tip icons disappear instantly. 

Figure 2d shows how drag-and-pop simplifies 
dropping icons onto targets located at the other side 

of a bezel that separates display units (scenario 2). 
Figure 9 shows a user performing a drag-and-pop 
interaction to drop an icon on a distant target. 

b c
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Figure 2: (a-c) Traditional drag-and-drop: Dragging 
an icon across the bezel requires the user to drop the 
icon half way across the bezel and pick it up at the 

other side (d) Drag-and-pop temporarily brings match-
ing target icons to the current pen location, allowing 

the user to file icons without having to cross the bezel. 

Drag-and-pick modifies the drag-and-pop inter-
action concept such that it allows activating icons, 
e.g., to open a folder or to launch a program. While 
drag-and-pop is initiated by the user dragging an 
icon, drag-and-pick starts with the user performing a 
drag interaction on empty screen space. The sys-
tem’s response to this drag interaction is similar to 
drag-and-pop, but with two differences. First, all 
icons located in the direction of the drag motion will 
pop up, not only those of compatible type (Figure 3). 
Second, as the user drags the mouse cursor over one 
of the targets and releases the mouse button, the 
folder, file, or application associated with the icon is 
activated as if it had been double clicked.  

Figure 4 shows how this allows users to use the 
pen for launching an application, the icon of which 
is located on a monitor not supporting pen input. 

In principle, drag-and-pick can be applied to any 
type of widget, e.g., any buttons and menus located 
on a non-pen accessible monitor. In this paper, how-
ever, we will focus on the manipulation of icons. 

3 Related work 
Drag-and-drop is a well-know interaction technique 
for transferring or copying information using a 
pointing device, while avoiding the use of a hidden 



 

 

clipboard (Wagner, 1995; Beaudouin-Lafon, 2000). 
Hyperdragging (Rekimoto, 1999), allows extending 
drag-and-drop across physically separate displays 
(Scenario 2), but requires an indirect input device, 
such as a mouse. Most techniques compatible with 
pen usage are based on point-and-click, e.g., pick-
and-drop (Rekimoto, 1997) and take-and-put (Streitz 
et al., 2001). These techniques, however, cannot be 
used to access material on a display unit not provid-
ing pen support (Scenario 1). 

 
Figure 3: Drag-and-pick makes all icons in the direc-

tion of the mouse motion come to the cursor. 

 
Figure 4: Drag-and-pick allows users to temporarily 

move icons from an external monitor to the tablet 
where the user can interact with them using the pen. 

A different set of interaction techniques have 
been proposed to help users overcome large dis-
tances (Scenario 3). Manual And Gaze Input Cas-
caded (MAGIC) pointing (Zhai et al., 1999) uses eye 
tracking to move the cursor to the target area, from 
where the user guides the cursor manually (which 
requires an indirect input device). Gesture input 
techniques allow selecting a target and a command 
in a single interaction and are generally compatible 
with pen input (Rubine, 1991). ‘Throwing’ allows 

users to accelerate an object with a small gesture; the 
object then continues its trajectory based on its iner-
tia (Geißler, 1998). The imprecision of human mo-
tor skills has prevented throwing from being used 
for reliable target acquisition. Myers et al. (2002) 
used laser pointers to acquire targets on a Smart-
board, but found them to be slower than touch input. 

A variety of mouse-based interaction techniques 
use destination prediction to simplify navigation 
(e.g., Jul, 2002). Dulberg et al. (1999) proposed a 
flying click or flick for snapping the mouse to target 
locations. Swaminathan and Sato (1997) proposed 
making relevant controls on the screen “sticky”. 

As an alternative way of launching applications, 
today’s operating systems offer menus containing 
lists of available application or documents. A ‘send 
to’ option (Microsoft Windows) allows sending an 
icon to a target selected from a predefined list. 
Compared to 2D desktops, which typically use a 
larger amount of screen space than pull-down or 
pop-up menus, menus are limited to a smaller selec-
tion of choices unless they use a hierarchical menu 
organization, which makes their usage less transpar-
ent and often less efficient. Furthermore, invoking a 
content-menu may require hitting a qualifier key, 
which can be problematic on touch-based systems. 

4 Design and algorithms 
In this section, we will take a more detailed look at 
the design and algorithms behind drag-and-pop/pick. 

4.1 Selecting candidates 
In order to reduce clutter, drag-and-pop creates tip 
icons only for a subset of the icons on the screen. 
Drag-and-pop’s candidate selection algorithm is 
initialized with the entire set of icons on the screen; 
it then successively eliminates candidates using the 
following four rules. 

First, icons of incompatible type are eliminated. 
If the user drags a text file, the icon of a text proces-
sor can create a tip icon; the recycle bin icon can 
create a tip icon; the icon of another text file, how-
ever, cannot, because dragging two text files onto 
each other is usually not associated with any behav-
ior. Drag-and-pick bypasses this selection step in 
order to allow users to activate any type of icon. 

Second, icons located between the cursor and the 
location where the tip icons cluster will appear (see 
following section) are eliminated. This rule avoids 
creating tip icons that move away from the cursor. 

Third, only icons that are located within a certain 
angle from the initial drag direction (the target sec-
tor) are considered. The initial drag direction is de-
termined the moment the user drags an icon further 



 

 

than a given threshold (default 15 pixels). During 
preliminary testing on a Smartboard, we got good 
results with first-time users when using sector sizes 
of ±30 to ±45 degrees. The sector size could be re-
duced to sector sizes of ±20 degrees as users gained 
more experience. 

Forth, if the number of qualifying icons is above 
some hard limit, drag-and-pop eliminates tip icon 
candidates until the hard limit is met. Icons are re-
moved in an order starting at the outside of the target 
sector moving inwards. This rule assures the scal-
ability of drag-and-pop to densely populated dis-
plays, but requires drag-and-pop users working with 
densely populated screens to aim more precisely. 
We typically use hard limits between 5 and 10. 

4.2 Computing the tip icon layout 
Once tip icon candidates have been selected, drag-
and-pop determines where on the screen to place the 
tip icons. In order to avoid interference between tip 
icons, the location of all tip icons is computed in a 
centralized fashion. 

Our drag-and-pop prototype uses the following 
algorithm that is illustrated by Figure 5: (1) Snap 
icons to a grid and store them in a two-dimensional 
array, with each array element representing one cell 
of the grid. If two or more icons fall into the same 
cell, refine the grid. (2) Shrink the icon layout by 
eliminating all array columns and rows that contain 
no icons. (3) Translate icon positions back to 2D 
space by mapping the array onto a regular grid. By 
default, the output grid is chosen to be slightly 
tighter than the input grid, which gives extra com-
pression.  

a b

 
Figure 5: Drag-and-pop computes tip icon layouts 

(a) by snapping icons to a grid and then (b) removing 
empty rows and columns. 

We chose this algorithm, because it preserves 
alignment, proximity, and spatial arrangement be-
tween icons, which allows users to use their spatial 
memory when identifying the desired target within 
the tip icon cluster. This is especially useful when 
tip icons look alike (e.g., a folder in a cluster of 
folders). In order to help users distinguish local icon 

clusters from surrounding icons more easily, the 
algorithm may be adjusted to shrink empty rows and 
columns during layout computation instead of re-
moving them entirely. 

After the tip icon layout has been computed, 
drag-and-pop positions it on the screen such that the 
center of the layout’s bounding box is located at the 
direct extension of the user’s current mouse motion. 
The distance of the tip icon cluster to the user’s cur-
rent cursor position is configurable. For inexperi-
enced users, we got best results with distances of 
around 100 pixels; shorter distances made these us-
ers likely to overshoot the cluster. For more experi-
enced users, we were able to reduce the distance to 
values around 30 pixels, which allowed these users 
to operate drag-and-pop with less effort, in a more 
“menu-like” fashion. In order to reduce visual inter-
ference between tip icons and icons on the desktop, 
drag-and-pop diminishes desktop icons while tip 
icons are visible. 
4.3 The rubber band 
When the tip icon cluster is displayed, users need to 
re-identify their targets within the tip icon cluster in 
order to be able to successfully acquire them. 

Our first implementation of drag-and-pop created 
tip icons on top of their bases and used slow-in-
slow-out animation (Shneiderman 1998) to move tip 
icons to their final location. While this approach 
allowed users to locate the final position of the de-
sired tip icon by visually tracking it on its way from 
basis to final position, it also required users to either 
wait for the animation to complete or to acquire a 
moving target. We therefore chose to abandon the 
animation and immediately display tip icons at their 
final destinations. 

In lieu of the animation, we provided tip icons 
with rubber bands. The design prototype of the rub-
ber band is shown in Figure 6. For performance rea-
sons, our prototype, which is shown in all other 
screenshots, uses rubber bands of a lower level of 
graphical detail, i.e., a tape and three lines in the 
color scheme of the corresponding icon. 

The purpose of the rubber band is to offer the 
functionality of the animation, but without the prob-
lems alluded to above. The rubber band, decorated 
with the respective icon’s texture, can be thought of 
as having been created by taking a photograph of the 
tip icon animation with a very long shutter speed 
(so-called motion blur, e.g., Dachille and Kaufman, 
2000). Like the animation, the rubber band allows 
users to trace the path from base to tip icon. How-
ever, users can do this at their own pace and the cus-
tomized texturing of the rubber band allows users to 
start tracing it anywhere, not only at the base. 



 

 

The rubber band is provided with a narrow mid-
riff section, suggesting that the rubber band is elas-
tic. This design was chosen to help users understand 
that tip icons have retracted to their bases when they 
disappear at the end of the interaction. This feature 
may also help users find their way to the tip icon 
faster, because it provides users with a visual cue 
about how far away the tip icon is located. A thick 
rubber band section implies that the tip icon (or 
base) is close; a thin rubber band section indicates 
that the target is further away. 
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Figure 6: The motion blur textures on the rubber 

bands that connect tip icons with their bases are made 
by overlaying skewed copies of that icon. 

4.4 Aborting drag-and-pop interactions 
As soon as tip icons and rubber bands are shown on 
the screen, drag-and-pop waits for the user to ac-
quire one of the tip icons to complete the ongoing 
drag-and-pop or drag-and-pick interaction. There are 
two cases, however, in which users will want to 
abort the interaction without acquiring a tip icon.  

The first case is when the user dragged the 
mouse at a wrong angle so that the desired target 
icon did not pop up. In this case, the user may either 
drop the icon and try again or complete the interac-
tion as a regular drag-and-drop interaction, i.e., by 
dropping the icon onto the target icon’s base instead.  

The other case occurs if the user is intending to 
perform a regular mouse drag operation, for example 
to rearrange icons on the desktop or to capture a set 
of icons using a lasso operation. For these cases, 
drag-and-pop allows users to terminate tip icons on-
the-fly and to complete the interaction without drag-
and-pop/pick. To abort, users have to move the 
mouse cursor away from the tip icon cluster while 
still keeping the mouse depressed. This can be done 
by overshooting the cluster or by changing mouse 
direction. In particular, this allows users to access 
the underlying drag-and-drop and lasso-select func-
tionality by introducing a simple zigzag gesture into 
their cursor path. The zigzag contains at least one 

motion segment moving away from the tip icons, 
thus terminating tip icons as soon as they appear. 

The algorithm: the tip icon cluster is kept alive as 
long as at least one of the following three rules is 
successful. The first rule checks whether the mouse 
cursor has moved closer to the center of at least one 
of the icons in the tip icon cluster. This rule makes 
sure that the cluster does not disappear while users 
approach their targets. The second rule checks if the 
cursor is in the direct vicinity of an icon. This rule 
provides tolerance against users overshooting a tip 
icon while acquiring it. The third and last rule keeps 
the cluster alive if the cursor is stationary or if it is 
moving backwards very slowly (up to 5 pxl/frame). 
This rule makes drag-and-pop insensitive to jitter. 
Figure 7 illustrates the resulting behavior. 

 
Figure 7: The tip icon cluster is kept alive as long as 
the user moves towards the cluster (arrows) or inside 

the convex hull surrounding the cluster (dashed). 

5 User study 
In this section, we report the results of a user study 
comparing drag-and-pop with the traditional drag-
and-drop technique. To examine the effects of bezel-
crossing as well as distance, as described in Scenar-
ios 2 and 3, we chose to run the study on a tiled 
wall-size display. During the study, in which par-
ticipants filed icons into folders or dragged them 
onto the icons of matching applications, we recorded 
the time and accuracy of these movements. Our 
main hypothesis was that participants would perform 
faster when using the drag-and-pop interface, pri-
marily because it would avoid the need for crossing 
the bezels, but also because it would bridge the 
space to very distant icons more efficiently. 

5.1 Desktop layout 
To obtain a representative set of icon arrangements 
for the study, we gathered desktop screenshots from 
25 coworkers who volunteered their participation 
(15 single, 6 dual, and 4 triple monitor users). Over-
all resolutions ranged from 800,000 pixels to 
3,900,000 pixels (66% more than the display wall 
used in the experiment). 



 

 

We clustered the obtained desktops by number 
of icons and arrangement pattern. Then we chose 
representatives from each of the three resulting main 
clusters for the study (Figure 8). The “sparse” desk-
top reflected the desktops of roughly two thirds of 
the participants. It contained only 11 icons, most of 
which were lined up in the top left corner of the 
screen. The “frame” desktop reflected the desktops 
of three of the participants. It contained 28 icons 
arranged around the top, left, and right edge of the 
screen. The “cluttered” desktop, finally, contained 
35 icons that were spread primarily across the top 
and left half of the screen. Five participants had cho-
sen this style of arranging their icons. 

Icon layouts were stretched to fit the aspect ratio 
of the display wall used in the experiment. An area 
at the bottom right of the screen was reserved for the 
starting locations of the icons to be filed during the 
study (dashed shape in Figure 8). 

a

b

c  
Figure 8: The (a) sparse, (b) frame, and (c) cluttered 

desktop layouts used in the study. The dashed line indi-
cates the space reserved for the icons users had to file. 
Boxes around icons indicate icon to be filed and target. 

5.2 Participants 
Eight colleagues with no experience using drag-and-
pop were recruited for this experiment. Due to tech-
nical problems, the data from one of these partici-
pants had to be dropped leaving us with 7. There 
were 2 female and 5 male participants ranging in age 
between 18 and 35. All were right handed with nor-
mal or corrected-to-normal vision. 

5.3 Method 
The test was run on the DynaWall (Streitz, 2001), a 
display wall consisting of three Smartboard units 
(Figure 9). Each Smartboard consisted of a back-
projected 72”display with resistive touch input, so 
that the entire display was 15’ (4.50m) long and 45” 

(1.12m) high. Display units could be operated by 
touching the display, but for easier handling partici-
pants were provided with color-free felt pens. Each 
of the three display units ran at a resolution of 
1024x768 pixels, offering an overall resolution of 
3072x768 pixels. The three display units were con-
nected to a single PC equipped with two Matrox 
Millennium graphics cards and running Win-
dowsXP. During the experiment, the DynaWall ran 
a simulated Windows desktop. We compared drag-
and-pop to a control condition of drag-and-drop. 
Since our preliminary Windows-based version of 
drag-and-pop did not support the full functionality 
required for the study, we implemented a simulation 
using Macromedia Flash (www.macromedia.com). 
The drag-and-pop interface used in the experiment 
was configured to a ±30 degree target sector, 35 
pixel target distance, and a maximum number of 5 
tip icons. 

 
Figure 9: DynaWall setup used in user study 

To each desktop layout we added 10 document 
icons in the lower right quadrant of the screen. 
These appeared in six different arrangements (Figure 
8 shows 2 of them). The participants’ task was to 
drag these icons into a given target folder or applica-
tion. Icons of image files, for example, were to be 
filed in a folder labeled “My Pictures” and all Word 
documents should be dropped onto the Word appli-
cation. To counterbalance for order effects, we re-
quired participants to file the documents in a ran-
domized order. That is, for each movement, the item 
to be filed was highlighted along with the target 
icon. All other document icons were frozen, so that 
participants could only move the highlighted icon. 
As soon as participants began moving an item, all 
highlighting was removed, forcing participants to 
remember the destination item. We did this to assure 
that participants would have to re-identify tip icons 
when using the drag-and-pop interface, just as they 
would in a real-world task. 



 

 

Participants were allowed several minutes to 
practice moving and filing icons in the prototype to 
get them accustomed to both the DynaWall display 
and the drag-and-pop interface. Once it was clear 
that users understood how to use the display and the 
interfaces, they were allowed to go on to the study. 
Participants filed 2 sets of icons for each interface 
(drag-and-pop and control), for each of the three 
desktops. Thus participants filed 2 x 10 icons x 2 
interface x 3 desktops for a total of 120 movements. 

To mitigate learning effects associated with new 
desktop arrangements or a new interface, we omitted 
the first 5 trials for any desktop-interface combina-
tion from our analyses, yielding ~15 correct trials 
per cell or 90 movements per participant. 

5.4 Results 
5.4.1 Task performance 
Task performance was evaluated through speed and 
accuracy measurements. Error rates were considera-
bly larger for drag-and-pop than for the control 
(6.7% vs. 1%). We observed two things that made 
this type of error more likely in the drag-and-pop 
condition. First, in the drag-and-pop condition can-
didate targets were brought closer together, making 
it easier to accidentally drop an item on the wrong 
target. Second, because drag-and-pop targets had 
been translated away from their “home” location, 
participants would sometimes forget which item was 
in fact the target, especially if visually similar icons 
(e.g., other folders) had created tip icons as well. 

All data analyses for movement times were per-
formed on the median movement times for each par-
ticipant in each condition to normalize the typical 
skewing associated with response time data. Sum-
mary statistics report the means of these times. 

Target icons could be located in the same display 
unit as the icon to be filed, in a neighbor display 
unit, or in the display unit at the other end of the 
display wall, requiring users to cross 0, 1, or 2 bez-
els in order to file the icon. To test the effect of 
bezel crossing on performance, we ran a 2 (Condi-
tion) x 3 (Bezels Crossed) within subjects ANOVA 
on the median movement data. This revealed a sig-
nificant main effect for condition, F(1,6) = 18.2, 
p<0.01. Collapsed across all distances, drag-and-pop 
was significantly faster than the control. There was 
also a significant main effect of bezels crossed, 
F(2,12) = 19.5, p<0.01; movement time increased as 
the number of bezels participants had to cross to get 
to the target icon increased. As hypothesized, we 
also saw a significant interaction between condition 
and number of bezels crossed, F(2,12) = 15.2, 
p<0.01. As seen in Figure 10, an increase in the 
number of crossed bezels resulted in only a small 

increase in movement time for drag-and-pop, 
whereas it had a huge effect for the control interface. 

When no bezels had to be crossed, drag-and-pop 
appeared to be slightly slower than control, although 
follow-up t-tests showed that this difference was not 
significant, t(6)=1.73, ns. When 1 or 2 bezels had to 
be crossed, drag-and-pop was significantly faster 
than drag-and-drop (t(6)=4.02, p<0.01 & t(6)=4.12, 
p<0.01, respectively). With 1 bezel crossed, drag-
and-pop was twice as fast as the control and with 2 
bezels it was 3.7 times as fast. 
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Figure 10: Mean movement time for control and drag-

and-pop interfaces (± SEM). 
Figure 11 shows a scatter plot of movement time 

versus target distance for both conditions. The best 
linear fit for drag-and-drop was f(x)=0.007x-1.76, 
r2=0.23. The linear fit for drag-and-pop was 
f(x)=4.19, r2<0.0001. This reinforces what can be 
seen in Figure 10—movement time increases with 
distance for the control interface, but stays relatively 
constant for the drag-and-pop interface. 
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Figure 11: Movement time vs. target distance. 

5.4.2 Questionnaire and subjective feedback 
At the end of the study, participants answered a 
short questionnaire about their experience using the 
DynaWall and drag-and-pop. Participants were very 
enthusiastic about drag-and-pop. On a 7 point Likert 
scale (where 7=strongly agree and 1=strongly dis-
agree), there was a mean > 6 for questions such as, 
“I liked using drag-and-pop”, “I always understood 
what was happening when drag-and-pop was on,” 



 

 

and “I would use drag-and-pop for large displays.” 
There was a mean of less than 3 for “It took a long 
time to get used to drag-and-pop” and “It was hard 
to control what the targets did when drag-and-pop 
was on.” Participants reported the drag-and-pop 
interface to cause less manual stress and fatigue than 
the control interface. 

The most common problem with drag-and-pop 
was in getting the right group of targets to pop up, 
and several participants requested a wider angle for 
destination targets. This relates to an observation we 
made about how people interact with touch-sensitive 
wall-displays. On the wall display, participants had 
to employ their whole arm to make a movement, 
resulting in targeting motions in the shape of arcs. 
This means that the initial direction of the movement 
was not in the direction of the target. To accommo-
date such arcs in the future, we have adapted the 
target selection algorithm of drag-and-pop by giving 
the target sector extra tolerance for movements to-
wards the top of the screen. 

6 Conclusions and future work 
The substantial time-savings found in the user study 
confirm our expectations. Although when used 
within a single screen unit drag-and-pop does not 
seem to by faster than traditional drag and drop (first 
pair of bars in Figure 10; drag-and-pop’s capability 
of bridging distance to the target seems to be nulli-
fied by the need for re-orientation), its advantages 
on very large screens and its capability of bridging 
across display units are apparent. On the usability 
side, we were glad to see that participants had no 
trouble learning how to use the technique and that 
they described the technique as understandable and 
predictable. The single biggest shortcoming, the 
target selection, is the subjects of current work. In 
addition to the changes described above, we con-
sider dropping the notion of a fixed target sector size 
and replace it with a mechanism that adjusts the sec-
tor size dynamically based on the number of match-
ing targets. 

Given the recent advent of commercially avail-
able tablet computers, our next step will be to ex-
plore how drag-and-pop and especially drag-and-
pick can help tablet computer users work with exter-
nal monitors. While this paper focused on icons, we 
plan to explore ways of operating menus, sliders, 
and entire applications using the techniques de-
scribed in this article. 
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ABSTRACT 
As users pan and zoom, display content can disappear 
into off-screen space, particularly on small-screen de-
vices. The clipping of locations, such as relevant places 
on a map, can make spatial cognition tasks harder. Halo is 
a visualization technique that supports spatial cognition 
by showing users the location of off-screen objects. Halo 
accomplishes this by surrounding off-screen objects with 
rings that are just large enough to reach into the border 
region of the display window. From the portion of the 
ring that is visible on-screen, users can infer the off-
screen location of the object at the center of the ring. We 
report the results of a user study comparing Halo with an 
arrow-based visualization technique with respect to four 
types of map-based route planning tasks. When using the 
Halo interface, users completed tasks 16-33% faster, 
while there were no significant differences in error rate 
for three out of four tasks in our study. 
Keywords 
Halo, visualization, peripheral awareness, off-screen loca-
tions, hand-held devices, spatial cognition, maps. blutwurst 
INTRODUCTION 
People use maps in a number of tasks, including finding 
the nearest relevant location, such as a gas station, or for 
hand-optimizing a route. Using a map, users can easily 
compare alternative locations, such as the selection of 
restaurants shown in Figure 1a (as indicated by the barn-
shaped symbols). Users can see how far away a restaurant 
is from the user’s current location, and whether it lies 
close to other locations the user considers visiting. When 
users are required to use a zoomed-in view, however, for 
example to follow driving directions (Figure 1b), relevant 
locations disappear into off-screen space, making the 
comparison task difficult2. Comparing alternatives then 
requires users to zoom in and out repeatedly—a time-
consuming process that can hardly be accomplished on-
the-fly. Especially on small-screen devices, such as car 
navigation systems or personal navigation devices, this 
can severely limit a user’s capability with respect to spa-
tial cognition tasks. 

HALO 
Halo addresses this issue by virtually extending screen 
space through the visualization of the locations of off-
screen objects. Figure 2a shows a map navigation system 
that is enhanced with Halo. The figure shows the same 
detail map as Figure 1b, but in addition the display also 
contains the location information contained in Figure 1a. 
The latter is encoded by overlaying the display window 
with translucent arcs, each indicating the location of one 
of the restaurants located off screen. Figure 2b shows 
how this works. Each arc is part of a circular ring that 
surrounds one of the off-screen locations. Although the 
arc is only a small fragment of the ring, its curvature con-
tains all the information required for locating the ring 
center, which is where the off-screen object is located. 
Although the display window shown in Figure 2a by itself 
contains no restaurant, the display informs users that there 
are five of them in the periphery and that the one located 
southwest is closest. 

a b

+

 
Figure 1: The problem: In order to make route de-
cisions, users need to see the alternatives (a), but 
when drilling down to street information, relevant 
locations disappear into off-screen space (b). 12 

Figure 3 shows how ring sizes are governed. As the map 
is panned, the restaurant moves from on-screen to off-
                                                           
1 The work reported in this paper was carried out during the first 

author’s affiliation with Xerox PARC, now PARC Inc. 
2 See also the concept of desert fog in zoomable interfaces [13]. 
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screen. As the restaurant icon reaches the border region of 
the display window, a ring grows under the icon. As the 
restaurant moves further off-screen, ring radiuses are re-
computed dynamically, so that the ring is always just big 
enough to reach into the border region of the display win-
dow while never occluding the display’s central region. 

a b
 

Figure 2: (a) Enhancing the map from Figure 1 
with Halo shows where in off-screen space the five 
restaurants are located. (b) How it works: each off-
screen location is located in the center of a ring 
that reaches into the display window. 

 
Figure 3: As this location is panned out of the dis-
play window, a ring emerges from its center. The 
ring grows as the location is panned further away. 

In the remainder of this paper, we discuss related work, 
present the concept and the design choices behind Halo, 
present our findings resulting from interviews with users 
of personal navigation devices, and present a user study 
comparing Halo with a more traditional arrow-based visu-
alization style. We conclude with a discussion of the 
benefits and limitations of our visualization technique. 
RELATED WORK IN VISUALIZATION TECHNIQUES 
A substantial amount of research has been done on navi-
gation aids, such as techniques for displaying driving [2] 
or walking directions [7]. While for following driving 
directions essentially any interface with an arrow was 
found to be sufficient [9], the contextual information re-
quired for route planning is more often supported using 
maps [14], e.g. for museum guides [1]. 

Several visualization techniques have been proposed for 
viewing large documents such as maps with limited 
screen resources. Multi-window arrangements, such as 
overview-plus-detail visualizations [16, 8], simultane-
ously display multiple views of the same map. However, 
the different scales of the individual views make it more 
difficult for users to integrate map information into a sin-
gle consistent spatial mental model and require users to 
spend additional time reorienting when switching be-
tween views [3]. 
Focus-plus-context visualization techniques, e.g. fisheye 
views [11, 6], use only a single view onto the document, 
so that split attention is avoided. However, these tech-
niques introduce distortion, which interferes with any task 
that requires precise judgments about scale or distance. 
Another track of work has evolved around visualization 
techniques pointing into off-screen space. Figure 4 shows 
two everyday-life examples that use arrows to point to an 
off-screen highway and to off-screen game characters. 
Similar examples can be found in Pad++ [4] and in col-
laborative virtual environments, where lines emerging 
from a user’s face help others see what the user is looking 
at [10]. By visualizing only selected off-screen content 
and by overlaying the visualization onto other display 
content, these “arrow-based” visualizations are very com-
pact (see [12, 8] for additional research on semitranspar-
ent overlays). Their main limitation is that arrows convey 
only direction information, so that map navigation tasks 
would require arrows to be annotated with distances. 

a

b  
Figure 4: Related work: (a) The arrow on this map 
points to an unseen highway. (b) The arrows on 
the right point to football players off screen (© Nin-
tendo ‘89). 

Halo combines many of the advantages of the approaches 
listed above. It offers a single non-distorted view that 
allows users to inspect detail information without losing 
context. Unlike arrow-based visualizations, Halo does not 
require additional distance annotation; arcs provide full 
information about the location of off-screen objects, not 
only their direction. This eliminates the need for a scale 
indicator; the distance information encoded in the arcs 
always refers to the scale of the current scene. This allows 
users to carry out distance computations visually, which, 
as we show in the evaluation section of this paper, can 
improve user performance significantly. 
CONCEPT AND DESIGN DECISIONS BEHIND HALO 
The concept behind Halo derives from techniques well 
known in cinematography and theatre [5]. In cinematog-



 

 

raphy, conventions used to imply off-screen space include 
the use of exit and entry points (character exiting or enter-
ing through one of these points), point-of-view (character 
on-screen looking somewhere off-screen), and partially 
out of the frame (part of an on-screen prop protrudes into 
off-screen space) [15]. In partially out of the frame, view-
ers recognize the prop as being only a portion of the 
whole object, which implies that the rest of the object has 
to be in off-screen space. 
The main difference between Halo and arrow-based tech-
niques can be explained using this classification. Arrows-
based techniques implement a point-of-view technique, 
which can convey only directional information. Halo uses 
the partially out of the frame technique, and by “attach-
ing” the off-screen location to the prop, the prop conveys 
the full off-screen location information. 
The prop has to fulfill two requirements. First, to allow 
viewers to mentally fill-in the missing off-screen parts, it 
has to be an object that viewers know and recognize. Sec-
ond, the object has to display features that allow viewers 
to understand its position in space well enough to know 
the location of the attached target. The ring shape used by 
Halo fulfills both requirements. A ring is a familiar shape, 
and furthermore it fulfills the second requirement in an 
extraordinary way, since a ring can be reconstructed from 
any fragment. This tremendous redundancy makes rings 
robust against various types of mutilation, such as crop-
ping at the window border or partial occlusion by other 
rings. 
Furthermore, humans are efficient at searching for lines 
of higher curvature among lines of lesser curvature [18]. 
Thus the rings provide an advantage in searching for 
closer off-screen locations. This can be expected to have 
a positive impact on task completion time for many tasks 
striving for path length minimization, such as the search 
for the closest gas station on a map. 
Halo implements a modified streetlamp metaphor 
Our original concept for Halo was to represent off-screen 
locations as abstract “streetlamps” that cast their light 
onto the ground/map. This metaphor allowed us to derive 
four important properties for Halo. First, a streetlamp 
creates an aura, a large artifact which allows observers to 
infer the lamp’s existence even if it is not in view. Sec-
ond, the aura created on the map is round, resulting in the 
benefits discussed above. Third, light overlays itself onto 
objects without occluding them; overlapping auras from 
multiple lamps aggregate nicely by adding up light inten-
sities. Forth, the fading of the aura with distance provides 
an additional visual cue about the distance of the street-
lamp. An intense aura indicates a lamp located nearby; a 
weaker aura indicates a more distant lamp.  
Our first prototype implemented this metaphor literally by 
using light auras on a dark background. The final design, 
(Figure 2) has undergone three modifications. First, in 
order to make it easier to perceive the halo curvature, we 
replaced the smooth transition at aura edges with a sharp 

edge. Second, to minimize occlusion of window content 
and overlap between auras, we replaced the disks with 
rings. Third, we inverted the color scheme resulting in 
dark halos on a light background in order to better ac-
commodate typical map material, which used a light 
background. 
The concept of fading arcs representing more distant lo-
cations was implemented by using translucency. Halo 
renders the short arcs that represent nearby locations as 
nearly opaque. Longer arcs representing more distant 
location are rendered with increasing translucency, which 
also compensates for the additional visual weight that 
their additional length would otherwise cause. 
Within the framework set by the streetlamp metaphor, we 
made a series of additional design decisions with the goal 
of maximizing the visualization of location, particularly 
the indication of distance, which is a central theme in 
Halo. The design described in the following subsections 
introduces a third visual cue for distance, arc length. 
Intrusion border and arc length 
In order to limit the interference of arcs with display con-
tent, Halo restricts arcs to the periphery of the display. 
Only the space outside the intrusion boundary (Figure 5) 
is shared between arcs and content; the space inside the 
intrusion boundary is reserved exclusively for content. 

intrusion border

handle

space for arcs…

and for corner arcs

 
Figure 5: Halo preference dialog. By scaling the 
intrusion border (horizontal drag), users assigns 
space to arcs. Rounding corners (vertical drag) 
gives extra space to corner arcs. 

The shape of the intrusion boundary was designed such 
that arc length would serve as another indicator for dis-
tance, in addition to curvature and opacity. Ideally, a 
longer arc would indicate that the represented object is 
further away than an object represented by a shorter arc. 
On a circular screen, as, for example, on a watch-type 
device, this is easily accomplished by using a circular 



 

 

intrusion border. Here, arc length depends only on dis-
tance to the location, and, as Figure 6a illustrates, two 
arcs representing the same distance on such a device have 
the same arc length. 

a b
 

Figure 6: (a) On a circular display, arcs represent-
ing the same distance have the same length. 
(b) On a rectangular display, that is not always the 
case, because arcs in corners may be cropped. 

On a non-circular display window, achieving correspon-
dence between arc length and distance to the represented 
location requires additional attention. With a rectangular 
intrusion boundary, arcs cropped at a corner of the dis-
play window are shorter than arcs of comparable intru-
sion depth along an edge (Figure 6b). The accurate solu-
tion, i.e. computing intrusion depth on a per-arc basis as a 
function of the desired arc length, can make arcs intrude 
deeply into the display window, which conflicts with the 
notion of a space reserved for content. Halo therefore 
maintains the concept of an intrusion border limiting arc 
intrusion, but uses a rounded boundary (see Figure 5) to 
give extra intrusion depth and thus length to corner arcs. 
Making Halo scale to large numbers of locations 
Arcs mapping to similar positions on the intrusion border 
may overlap. In general, arcs are highly robust against 
overlap, but there are two cases where it can become an 
issue. 
First, arcs of strongly collocated locations will yield arcs 
with large amounts of overlap along the entire length of 
the arc. Halo handles this by merging strongly overlap-
ping arcs into a single multi-arc (Figure 7). Multi-arcs are 
created by rendering 2-3 thinner, concentric arcs, centered 
at their average location. Groups of four or more loca-
tions are indicated by a thick double ring. As the user 
pans towards a cluster, arc overlap will decrease, so that 
targets that are not exactly collocated will become indi-
vidually accessible. 
Second, scenarios involving a large number of off-screen 
locations can get cluttered, since the number of intersec-
tions between arcs grows quadratically with the number 
of arcs. For tasks where locations represent alternatives, 
Halo allows suppressing the rendering of locations that 

fall below a certain rank-specific relevance threshold. For 
tasks that require users to visit all targets, Halo allows 
showing all targets by merging arcs into multi-arcs using 
bottom-up clustering. 

 
Figure 7: Overlapping arcs merge into double arc. 

Design variables available for content visualization 
Halo uses arc shape, arc length, and opacity for convey-
ing location information. This means that a wide range of 
design variables, such as color, texture, and arc thickness, 
remain available for communicating additional properties 
of the respective off-screen locations, such as a restau-
rant’s Zagat’s rating. Applications designers may, for 
example, choose to overload such a relevance value to arc 
opacity (with the notion that relevance may compensate 
for distance), map it to arc thickness, or map it to color 
properties, such as hue.  
In the next two sections, we move on to a preliminary 
field study and an experimental evaluation of Halo. 
INTERVIEWS WITH NAVIGATION DEVICE USERS 
In order to define realistic tasks for our user study, we 
conducted a preliminary field study. We interviewed 8 
users who used five different personal navigation devices: 
6 users of GPS devices and 2 users of personal digital 
assistants (PDAs) running map software. Participants 
were male researchers from three research labs who vol-
unteered their participation. Each interview lasted be-
tween 10 and 40 minutes. We used an informal interview 
procedure covering the device, the application subjects 
used, and the subjects’ tasks. In four cases, we obtained 
demonstrations of actual usage of the device. We also 
asked about specific problems with existing technology 
and suggestions for improvement. A summary of our re-
sults follows: 
Driving directions: Two participants use Garmin eMap 
personal GPS navigation devices for driving directions 
(www.garmin.com/manuals/etrex_vis.pdf). They plan 
routes using their desktop computer, e.g. using Microsoft 
Streets & Trips, upload the results into the eMap device, 
and then follow the turn-by-turn directions. Car com-
pass: One participant uses his Magellan GPS device as a 
compass, because, as he explains, compasses do not work 
in cars. Finding home: One participant uses his Garmin 
eTrex Summit GPS device to find his way back to the car 
when cross-country skiing or hiking. The device tells him 
how far he is away from his car, allowing him to return 
on time. It also shows him which direction to go. Data 
collection: Two participants use their eMap and eTrex 
GPS devices to generate location data for their research 
project, but do not interact with the devices directly. Map 
planning: Two participants use their PDAs (no GPS sup-
port) to find locations while in the city. The iPAQ Pocket 



 

 

PC user runs a pocket version of Microsoft MapPoint. 
The Palm Pilot user runs Vindigo, a subscription service 
that features restaurants as well as up-to-date content, 
such as movie theaters schedules. Vindigo allows visual-
izing locations on a map. 
Only the PDA users used their devices for making route 
decisions on the fly. The GPS device users found the 
screens too small (160x120 b/w pixels on the eMap) and 
screen redraw too slow (up to several seconds). Applying 
on-the-fly changes to routes on the GPS devices would be 
possible but would require a copilot. When deriving tasks 
for our experimental comparison, this gave extra weight 
to the two PDA users, although tasks and experiences of 
all eight users were considered. 
Deriving tasks for the experimental comparison 
Based on the interviews, we devised four experimental 
tasks that involved spatial cognition. Inspired by the hiker 
using his GPS device for returning to his car, we included 
a task where users would estimate the location and dis-
tance of off-screen locations. The second task was mod-
eled after the iPAQ user who used his device for finding 
nearby restaurants. The iPAQ user also inspired the third 
task, namely organizing multiple locations into a single 
traversal. The forth and last task was modeled after the 
desire of the Palm user to see traffic conditions integrated 
into the route planning process. The two PDA users and 
one of the driving direction users mentioned the need to 
zoom frequently, so we included maps of variable scales 
in the experiment. We did not include a task involving 
users following directions, since it did not involve a sig-
nificant amount of spatial cognition. We will describe all 
four tasks in detail in the following section.  
Based on the results of our field interviews, we now had 
realistic tasks that would support a fair experimental com-
parison between different approaches to displaying 
contextual location information on a handheld device.  
USER STUDY: HALO VS. ARROWS 
In our user study, we compared Halo with an interface 
using an arrow-based visualization. Users had to com-
plete four tasks. The main goal of this study was to de-
termine which interface would allow users to complete 
their task fastest.  
Interfaces/apparatus 
Figure 8 shows the Arrow interface and the Halo interface 
used in the study. Both interfaces were designed for a 
Compaq iPAQ Pocket PC, which was emulated on the 
screen of a desktop computer. Emulation was necessary 
because for one task subjects were required to select loca-
tions outside of the iPAQ. For the study, we re-
implemented an earlier Java version of Halo in Macrome-
dia Flash™, extended it with features required for the 
study, and inserted functions logging the user’s selec-
tions, task completion times, and error rates. The Flash 
version was also used to create the screenshots in this 
paper and the video figure. The emulated iPAQ screen 
measured 3” x 4”, roughly 33% bigger than its real-life 

size. The laptop computer screen was a 12” screen run at 
1024 x 768 pixels, 105 dpi resolution. Users made selec-
tions required by the tasks using an external mouse. 
The Halo and the Arrow interfaces differed with respect 
to their way of indicating the location of off-screen loca-
tions. The Halo interfaces used red arcs for that purpose, 
as described in this paper. Instead of the arcs, the Arrow 
interface visualized off-screen locations by using arrows 
pointing along a line from the center of the screen to the 
off-screen locations and lined up with the border of the 
display window (see Figure 8a). Arrows were of the same 
color and opacity as the arcs of the Halo interface. Unlike 
the arcs, arrows were annotated with a three-digit number 
indicating the distance of the off-screen location from the 
display border. In order to allow users to interpret the 
number, there was a scale indicator at the bottom right 
inside the display window. 
The Halo interface differed in two ways from that de-
scribed in previous sections. First, to provide a clearer 
comparison of the arc and arrow cues to off-screen loca-
tion, the fading of arcs was disabled, so that all arcs were 
of the same opacity. Second, in order to prevent users 
from obtaining the requested information through naviga-
tion, zooming and panning were disabled. Individual 
maps used scales ranging from 110m to 300m per cm on 
the screen. In order to provide users with a visual cue for 
the current zoom factor, a map was used as the backdrop, 
which scaled with the zoom. No other task information 
was available from the map. During the study, off-screen 
locations were never close enough to each other to require 
the use of the multi-arcs described earlier. 

a b  
Figure 8: (a) The Arrow interface and (b) the Halo 
interface, both showing the same map. Which of 
the 5 off-screen restaurants is “closest” to the car? 

Tasks 
Users had to complete four tasks. Figure 9 shows exam-
ple maps for each task. The users were instructed, “Com-
plete each map as quickly as possible while maintaining 
reasonable accuracy.” Distances in the task were ‘as the 
crow flies’, not distances along streets depicted in the map. 



 

 

The “Locate” task: The user’s task was to click in the 
off-screen space at the expected location of the off-screen 
targets indicated by each of the five red arrows/arcs 
(Figure 9a). Users were allowed to locate targets in any 
order; the system automatically picked the closest match. 
The “Closest” task: Each map contained a blue car icon 
and five red arrows/arcs representing restaurants 
(Figure 9b). The user’s task was to click on the arrow/arc 
corresponding to the off-screen location closest to the car. 
The “Traverse” task: Each map contained a blue car 
icon and five target indicators. Targets could be either 
off-screen, indicated by red arrows/arcs, or on-screen 
(Figure 9c). The user’s task was to select all five targets 
in order, so as to form the shortest delivery path, begin-
ning at the car. 
The “Avoid” task: The user’s task, as “ambulance dis-
patcher,” was to select the hospital farthest from traffic 
jams, thus most likely to be accessible to an incoming 
ambulance. Each map contained indicators of five on- or 
off-screen traffic jams, and three blue cross-shaped icons 
representing hospitals (Figure 9d).  

(a) locate (b) closest

(d) avoid(c) traverse  
Figure 9: Examples of maps used in the four tasks 

Procedure 
12 users participated in the study, including the second 
author of this paper, unpracticed with the use of the inter-
face and tasks. There was no significant or observable 
difference between the performance of the second author 
and other users in the study and the author is excluded 
from any discussion of user preferences. We used a 
within-subject experimental design, i.e., each subject car-
ried out all four tasks on both interfaces. In order to avoid 
sequence effects, task order, and interface order on a par-
ticular task, were counterbalanced between subjects. 
Users received verbal instruction and four training maps 
for each interface, followed by eight timed maps. Upon 
completing each task, they answered questions about their 
interface preference for that task, and their impression of 
how confusing/clear the interfaces were. Upon conclud-
ing all tasks, users were asked to rate difficulty for each 
task, and to specify their overall interface preference. 

Users were interviewed upon completion of the tasks. The 
overall session took around 30 minutes. 
Hypotheses 
Our first hypothesis was that subjects would complete 
each task faster with the Halo interface than with the ar-
row-based interface. This hypothesis was based on the 
assumption that Halo arcs would allow for a faster per-
ception of the represented locations than the textual anno-
tation used by the arrow-based interface, and in particular 
that the gestalt of Halo arcs would help subjects perceive 
multiple locations at a glance. This, we expected, would 
help subjects form a spatial model, which would enable 
easier distance comparisons. Our second hypothesis was 
that subjects would experience an increase in task speed 
without an increase in error rate. Our third hypothesis was 
that higher efficiency would also result in higher subjec-
tive satisfaction with the Halo interface. 
Results 
Task completion time: Table 1 summarizes the average 
time subjects required to complete a map, for each task 
and interface. Confirming our first hypothesis, subjects 
achieved better task completion times in all four tasks 
when using the Halo interface. In the Locate task, task 
completion was 16% faster when subjects used the Halo 
interface. In the Closest task the difference was 33%, in 
the Traverse task 18%, and in the Avoidance task 16%. 
These results were significant, as discussed in more detail 
below. 

Task Arrow interface Halo interface 
Locate 20.1 (7.3) 16.8 (6.7) 
Closest 9.9 (10.1) 6.6 (5.3) 
Traverse 20.6 (14.1) 16.8 (8.7) 
Avoid 9.2 (4.7) 7.7 (5.8) 

Table 1: Average task completion times in sec-
onds (and standard deviations)  

We evaluated these differences in completion time using 
a repeated-measures ANOVA for each task. In each case, 
our model included factors of interface style (arcs/ar-
rows), subject, map, order (arrows-first, arcs-first), and 
interaction effects between interface style and each of the 
other main factors. We used a conservative criterion for 
significance due to the large number of tests involved. 
Unless otherwise stated, all significant effects are signifi-
cant at the p<.001 level. Due to space constraints, we 
present here only effects of interest, i.e. those involving 
interface type. Where appropriate, ANOVA’s were per-
formed on log response time. We also assumed bino-
mially distributed data for percent correct data, and 
Gamma distributed data where appropriate for distance 
error data. 
As mentioned above, the main effects of interface were 
significant for the Locate (F(1,141=21.50), Closest 
(F(1,140=54.85), and Avoid (F(1,140=18.18) tasks, and 
marginally significant for the Traverse task 



 

 

(F(1,140)=10.28, p=0.0017). We did find significant sub-
ject x interface interactions for the Closest (F(9,140)= 

4.01) and Traverse (F(9,140=3.75) tasks. Closer examina-
tion revealed that in both cases, the interactions were the 
result of 2 out of 12 subjects (a different 2 for the 2 tasks) 
performing faster with the arrows than with the arcs, 
while all other subjects showed the opposite pattern. This 
interaction does not greatly affect our interpretation of the 
main effects. 
From subject response, the higher cognitive load for lo-
calizing arrow targets seemed to be the major factor in-
fluencing the Halo interface performance advantage over 
the arrow-based interface, with 7/11 subjects volunteering 
that arrows “required too much math.” Furthermore, two 
subjects volunteered that while some work was required 
for both interfaces to get a sense of the configuration of 
all targets, with the Halo interface this configuration 
would persist, which made tasks like the Traverse and 
Avoid tasks, where subjects had to acquire a mental 
model of the space, much easier. 
Error rate: Table 2 shows the error for each of the four 
tasks. Due to the different nature of the four tasks, error 
was computed differently for each task. For the Closest 
and the Avoid tasks, which required subjects to choose 
among a small number of choices, we analyzed their per-
cent correct performance. For the Locate task, we meas-
ured error as the Euclidian distance between the subject’s 
location estimate and the actual location of the off-screen 
location. For the Traverse task, we used the difference in 
length between the traversal subjects chose and the opti-
mal traversal for the respective map. The average total 
distance in the Locate task was 98 pixels, and the average 
optimal distance in the Traverse task was 1156 pixels. 
For the Locate task, the ANOVA did find a significant 
main effect of interface on error (F(1,1039)=14.34), al-
though the difference in error, the accuracy of the Halo 
interface was 5 pixels worse in average, was comparably 
small. For the Closest, the Traverse, and the Avoid tasks, 
Table 2 shows a reduction in error with the Halo inter-
face, but none of these differences were significant (Trav-
erse: F(1,166)=0.55, p=.54; Closest: F(1,154) = 0.05, 
p=.18; Avoid: F(1,154)=0.12, p=.27). This confirms our 
second hypothesis that faster task completion with the 
Halo interface would not come at the expense of error, for 
all tasks except the Locate task. 

Task Arrow interface Halo interface 
Locate 23.5 pixels (21.6) 28.4 pixels (33.8) 
Closest 22% (42%) 21% (41%) 
Traverse 97.4 pixels (94.7) 81.0 pixels (96.7) 
Avoid 15% (35%) 14% (34%) 

Table 2: Error rate (and standard deviations). 

Dependence of error on distance: For the Locate task, we 
found, for both interfaces, a clear linear correspondence 
between distance and error, as well as a significant inter-

action between interface and distance (F(1,1039)= 
114.58). Regression analysis yielded the relationships: 
Error(pixels) = 6.6 + 0.17*dist for arrows; and Er-
ror(pixels) = -6.4 + 0.37*dist for arcs. Since for Halo the 
incremental change in curvature gets smaller with grow-
ing radius, the distance awareness provided decreases 
with distance, and the error for arcs increases faster with 
distance than the error for arrows (p<.001). 
Dependence of error on direction: We analyzed whether 
error depended on whether arcs were cropped at the cor-
ner of the display window. We found subjects to have 
twice as much error, on average, when the arc crossed a 
corner (M=52.3 pixels, SD=44.4) than when the arc lay 
along one side of the display (M=23.3 pixels, SD=28.7) 
(F(1,511)=41.6).  

Distance error vs. direction error: To better understand 
the strengths and weaknesses of the two interface styles, 
we separated radial distance errors from direction errors, 
with direction error measured perpendicular to radial dis-
tance. This showed that the higher error in the locate task 
came mainly from the distance error. Subjects had signifi-
cantly more bias towards underestimating distance with 
the arcs (M= -19.0 pixels, SD=38) than with the arrows 
(M= -0.6 pixels, SD=30) (F(1,1074)=81.80). There was 
no significant difference between arcs and arrows in di-
rection errors (F(1,1022)=1.70, p=.81, M(arcs)=5.9, 
SD=9.4, M(arrows)=6.6, SD=7.5). These results are in 
line with our expectations, given our knowledge of the 
interface. 
Subjective preference: For all four tasks, the majority of 
subjects who expressed a clear preference (see Table 3) 
preferred the Halo interface, which confirms our third 
hypothesis that improved efficiency would translate into 
preference. Overall, 6/11 subjects preferred the Halo in-
terface, compared to 3/11 for the Arrow interface, with 
2/11 having no overall preference. 

Task Arrow interface Halo interface 
Locate 2 8 
Closest 3 6 
Traverse 1 7 
Avoid 2 4 

Table 3: Number of subjects who expressed a 
clear preference for the respective interface. Re-
maining of 11 subjects expressed no preference. 

Two subjects, one of whom preferred arrows and the 
other of whom had no preference, reported that they liked 
arrows because they could “just read the numbers… they 
just tell me what to do—I don’t need to guess.” 
Discussion 
Overall, our user study confirmed our hypotheses and 
provided evidence for Halo’s usefulness in tasks involv-
ing spatial reasoning. Only our hypothesis regarding the 
error rate for the locate task was not borne out—the Halo 
interface did result in lower location accuracy than the 



 

 

Arrow interface. As our analysis showed, the difference 
in accuracy was caused almost exclusively by subjects 
underestimating distances when using the Halo interface. 
Looking for an explanation, the comment of one subject 
seems relevant, who mentioned that the arc felt more like 
being part of an oval, rather than as part of a ring—which 
would be a valid explanation for the biased perception of 
distance. While this effect requires more detailed exami-
nation, we plan to address the issue by adapting Halo’s 
geometric model to the mental model of the users. This 
means replacing the rings used in the current version of 
Halo with ovals, the parameters of which will be deter-
mined by the biases measured in the user study. 
The other issue that needs to be addressed is subjective 
satisfaction. Despite the superiority with respect to task 
completion time, not all subjects preferred the Halo inter-
face. Based on subjects’ comments during the experi-
ment, it seems that the perceived accuracy of the Halo 
interface may have been the reason for this. 6 subjects 
reported either that they felt they were more accurate with 
arrows, or they were uncertain of their accuracy with the 
arcs. We feel that this effect may partially be explained by 
the fact that interface panning and zooming was disabled 
in the experiment, so that subjects never got a chance to 
verify their model of off-screen geometry by panning the 
involved locations onto the screen. We expect some of 
this insecurity to go away with practice, particularly with 
the visual feedback that users get through panning and 
zooming. 
CONCLUSIONS 
In this paper, we presented Halo, a visualization tech-
nique providing users with location awareness of off-
screen objects. Halo provides a single non-distorted view 
of a document, overlaid with location information for the 
off-screen locations. Unlike arrow-based visualizations, 
Halo does not require explicit distance annotation; the 
distance information is encoded in the arcs themselves 
and directly incorporates the scale of the scene. 
We have presented a user study evaluating Halo in com-
parison to an arrow-based visualization technique. Tasks 
were picked based on the results of a field study, also 
briefly presented in this paper. Halo led to significant 
timesaving (16% to 33%) in the four experimental tasks, 
as well as higher subjective satisfaction. 
In future work, we plan to explore the application of Halo 
in the area of real-time tasks, such as simulations or 
highly interactive games where Halo arcs will be used to 
continuously update users about the location of moving 
objects in the user’s periphery. 
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ABSTRACT 
In order to display web pages designed for desktop-sized 
monitors, some small-screen web browsers provide single-
column or thumbnail views. Both have limitations. Single-
column views affect page layouts and require users to 
scroll significantly more. Thumbnail views tend to reduce 
contained text beyond readability, so differentiating visu-
ally similar areas requires users to zoom. In this paper, we 
present Summary Thumbnails—thumbnail views enhanced 
with readable text fragments. Summary Thumbnails help 
users identify viewed material and distinguish between 
visually similar areas. In our user study, participants lo-
cated content in web pages about 41% faster and with 71% 
lower error rates when using the Summary Thumbnail in-
terface than when using the Single-Column interface, and 
zoomed 59% less than when using the Thumbnail interface. 
Nine of the eleven participants preferred Summary 
Thumbnails over both the Thumbnail and Single-Column 
interfaces. 
ACM Classifiction: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
General Terms: Human Factors, Design. 
Keywords: Web browsing, small screen device, PDA, 
thumbnail view, overview, semantic zooming. blutwurst 
INTRODUCTION 
Web pages are typically designed with the desktop screen 
in mind, and therefore often use multi-column layouts and 
preformatted page widths. Such pages can be hard to read 
on small screens. If rendered as is, the resulting page is 
typically much larger than the web browser screen and users 
need to scroll both horizontally and vertically to view it 

[27]. 
To avoid the need for horizontal scrolling, the majority of 
commercially available small-screen web browsers provide 
a single-column viewing mode that reformats the page by 
concatenating all its columns, thus displaying it as a single, 

very long column. Figure 1 shows an example. While this 
approach tends to work well for helping users read pages, it 
is of limited use while browsing. Since this approach af-
fects the layout of pages so significantly, users may find it 
hard to recognize pages familiar from desktop viewing. 
(See the left side of Figure 3 for a better idea of what this 
page looked like before the conversion). This display style 
also significantly increases the required amount of vertical 
scrolling. As the scrollbar position in Figure 1 indicates, 
accessing the news story that used to be at a prime location 
at  the  top  of  the  page  now           requires scrolling 8 
screens  down,  past   what                 used to be the menu 
column of that page. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Viewing the first headline in this single-
column browser, requires scrolling 8 screens down. 

To reduce the need for horizontal and vertical scrolling and 
to give users an overview of the page, researchers have 
proposed displaying web pages as a thumbnail view, i.e., a 
version of the page that is scaled down to fit the width of 
the small screen (e.g., [7]). Figure 2a shows an example. In 
the intended use, users start by viewing a web page in the 
thumbnail mode, rapidly identify the area of interest, and 
then zoom into that area for reading. The problem with this 
approach, however, is that the required size reduction typi-
cally renders text on thumbnails unreadable [2], as illus-
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trated by the callout in Figure 2a. Due to the lack of read-
able text, users are often unable to tell similar looking areas 
apart and thus have to resort to exploring these locations 
using a tedious zoom-in-and-out or panning strategy. 

a b
 

Figure 2: (a) Traditional thumbnail views render text 
in this news page unreadable. (b) The same page 
as a Summary Thumbnail contains enough read-
able text to allow users to identify the area contain-
ing the sought content.  

SUMMARY THUMBNAILS 
To address this issue, we propose Summary Thumbnails. 
Summary Thumbnails are thumbnail views enhanced with 
fragments of readable text as shown in Figure 2b. Similar 
to traditional thumbnails, Summary Thumbnails preserve 
the original page layout which allows users to identify the 
overall page structure, and can help users recognize previ-
ously viewed pages. In Figure 2, for example, users may 
recognize the typical appearance of the homepage of the 
CNN news site and may find that the page consists of a 
thin menu column at the left, a news headline column in the 
middle, and a column of links and auxiliary materials at the 
right. Unlike traditional thumbnail views, however, the 
readable text fragments provided by Summary Thumbnails 
allow users to disambiguate the desired news story from 
similar looking areas. For example, the image caption 
shown in this Summary Thumbnail allows users to verify 
that this really is the story of interest concerning the Iraqi 
Governing Council. The readable text thereby eliminates 
the need for any further zooming or panning activity. 
In order to fit the space requirements, mainly to fit the page 
to the browser width, Summary Thumbnails contain less 
text than the original web page (we will describe our text 

reduction algorithm in detail in the “Implementation” sec-
tion). When zoomed in, however, Summary Thumbnails 
show the original, unabbreviated version of the page as 
shown in Figure 3. Zooming interactions involving a 
change in representation have also been referred to as se-
mantic zooming [3]. Note that despite the change of repre-
sentation during this zoom operation, the Summary 
Thumbnail and the detail views look similar enough for 
users to maintain a sense of which areas in the thumbnail 
correspond to which areas in the detail view. 

++

 
Figure 3: The zooming interaction provided by 
Summary Thumbnails is a semantic zoom: zooming 
in replaces the abbreviated text with complete text. 

Summary Thumbnails can be scaled arbitrarily, allowing 
them to fit the screen size of any target device. Font size 
can be adjusted independently, which allows adapting 
Summary Thumbnails to the requirements of the target 
scenario. In the case of Personal Digital Assistants or 
Smartphones with a crisp display, setting the font size to 
the smallest readable font size (e.g., 7 pixels, as done in 
Figure 2) maximizes the amount of viewable screen con-
tent. In other scenarios, reading text of that size would be 
hard. For example, the display may use very high resolu-
tion resulting in very small font, the display may be blurry 
(e.g., a TV set), or the user may be vision-impaired. In the-
ses case, setting font size to a higher value can help address 
the problem. Figure 4 illustrates this at the example of a 
page being scaled to fit a variety of target screen sizes. 
In the remainder of this paper, we give a brief summary of 
the related work and discuss the algorithm and implementa-
tion behind Summary Thumbnails in more detail. We then 
present two user studies in which Summary Thumbnails 
outperformed the competing Single-Column interface in 
terms of task time and accuracy, and the Thumbnail inter-
face in terms of navigation effort. We conclude with a 
summary of our findings and some ideas for future work. 



 

 

 
Figure 4: Summary Thumbnails can be adapted to 
arbitrary screen and font sizes. Here the same web 
page is shown on mockups of different devices. 

RELATED WORK 
Summary Thumbnails are associated with two fields of 
related work, i.e., small-screen browsing techniques and 
semantic zooming. 
There are four general approaches to displaying web pages 
on small screen devices: device-specific authoring, multi-
device authoring, automatic re-authoring, and client-side 
navigation [4]. The first two approaches obtain high-
quality results by authoring for device specifics (e.g., [13]). 
This requires the effort and cooperation of the individual 
page authors, and cannot be applied to existing pages.  
Automatic re-authoring and client-side navigation do not 
require the collaboration of page authors and are therefore 
more widely applicable. Research prototypes that use auto-
matic re-authoring fall into two main categories: page re-
formatting and page scaling. An example of page reformat-
ting is the aforementioned single-column views (e.g., 
Small-Screen RenderingTM, opera.com). Other examples of 
techniques based on page reformatting include the Power 
Browser [6], where images and white space are removed, 
and the WEST browser [5], which uses flip zooming, a 
visualization technique that breaks pages into screen-sized 
tiles, and presents them as a stack. Difficulties with recog-
nizing layout and leveraging the desktop browsing experi-
ence, as we have described them for single-column brows-
ing, are common to all these approaches, since they all im-
pact the page layout more or less significantly. 
To avoid the drawbacks faced by page reformatting, re-
searchers proposed approaches that preserve the appear-
ance of the page by scaling the page, resulting in a web 
page thumbnail [7]. To help overcome the user effort in-
volved in zooming thumbnails, researches have proposed 

extending thumbnail browsers by adding overview plus 
detail solutions ([18], also, in the Thunderhawk browser, 
thunderhawk.com), callouts for selected content areas 
(WebThumb [23]), user-selected column zoom (SmartView 
[16]), text summaries [11], rapid serial visual presentation 
display (Streaming Thumbnails [8]), and removal of irrele-
vant tiles (collapse-to-zoom [2]). Fisheye-based solutions 
such as fishnet [1] were shown to be useful for reducing 
the length of a web page. For reducing the width of a page, 
however, fisheye-based approaches can force users to 
scroll horizontally for each line of read text. 
The second field of related work is semantic zooming, or 
techniques that change the representation of content during 
scaling or zooming [3, 12]. In the context of web browsing 
on the desktop, semantic zooming has been used to present 
query results [24, 9], to support keyword searching inside 
web pages [21, 1], and to improve accessibility [26]. For 
smaller screens, Gomes et al. [11] developed a system that 
displays text on PDAs at different semantic zoom levels: 
from displaying only the title at the lowest level, to display-
ing the complete original text. Lee & Grice [15] extracted 
text from XML-based files and displayed them in a cus-
tomizable viewing style on PDAs. While these systems 
allow PDA users to view a larger selection of web pages, 
neither of them preserves the original layout of the viewed 
pages. 
Researchers have found that displaying both the thumbnail 
and a text summary of a web page better supports page 
identification among query results [9]. These two elements 
can be presented separately [9] or integrated, e.g., in en-
hanced thumbnails where search words “popout” of other-
wise unreadable thumbnails [24]. The concept of search 
term popouts was used to help users find keywords in web 
pages more efficiently by combining it with an overview-
plus-detail approach (popout prism [21]) or a fisheye ap-
proach (fishnet [1]). While search term highlighting/pop-
outs were proven to be effective [1], their applicability is 
limited to those cases where users can, and are willing to 
express their information need in terms of query terms. 
Summary Thumbnails combine many benefits of the ap-
proaches listed above. As thumbnails, Summary Thumb-
nails preserve page layouts, and allow users to leverage 
their prior browsing experience. Readable text fragments 
allow users to disambiguate page content and to identity 
relevant areas. Further, since these text fragments are of-
fered across the entire page, it takes less effort to skim the 
page than when using techniques that require users to ex-
plore the page using isolated focus areas [18, 23]. 
IMPLEMENTATION 
A standard way of processing web pages for viewing on 
small screen devices is through a proxy server that trans-
forms pages on-the-fly (e.g., Thunderhawk browser, thun-
derhawk.com, but also [26]). A proxy server is a program 
that receives web page requests (here from mobile de-
vices), loads the respective pages, converts them, and 
serves them to the devices that requested them. Running 
the proxy on a powerful machine, such as a PC or server, 



 

 

eliminates the need for processing on computationally 
weak mobile devices. Also, this approach makes it easier to 
serve different platforms, such as the ones mentioned 
above. 
Our current implementation of Summary Thumbnails im-
plements such a converter program, a standalone executa-
ble that runs on a desktop PC. However, since our immedi-
ate focus was to enable the user study, our converter still 
lacks the communication capabilities of a proxy and re-
quires users to load and save pages manually. 
Our converter program supports two output formats. First, 
it can output a converted HTML page. This page has the 
structure of a Summary Thumbnail, i.e., it contains abbre-
viated but enlarged text, but it s still as big as the original 
page. The final web page size reduction is performed by 
displaying the page on a web browser with scaling capa-
bilities. We used the CSS zoom feature supported by MS 
Internet Explorer 5.5 and later [2] (msdn.microsoft.com). 
Second, to implement our study conditions, we configured 
our converter to automatically render pages using a Micro-
soft WebBrowser control (http://msdn.microsoft.com), cap-
ture its output, and scale down the captured bitmap images 
to the desired output size using bi-cubic filtering. We cre-
ated a simple viewer program for viewing and scrolling the 
resulting bitmaps. We used this viewer to administer all 
interface conditions in our user studies. Also all screen-
shots shown in this paper are screenshots of this viewer. 
Our converter prototype is based on the MSHTML library, 
which prevents it from handling pages that contain frames. 
Besides that, conversion so far has worked for all web 
pages we sampled. Note however that since our converter 
program modifies only text, text encoded as bitmaps re-
mains unchanged. 

Text reduction 
Removing common words: Words that otherwise occur less 
frequently tend to carry more of the meaning contained in a 
segment of text [19]. When reducing text, our converter 
program therefore removes common words first, as defined 
in a standard word frequency list [25]. The preservation of 
rare words also helps preserve keywords that a user might 
be visually scanning for. Alternatively, our converter 
program can be configured to crop paragraphs, which can 
be preferable for cases where text is already highly 
summarized, e.g., news headline. The Summary Thumbnail 
shown in Figure 2 was generated using the second method. 
Preservation of line count: Our initial strategy was to make 
Summary Thumbnails preserve the overall length of the 
page. Since larger font in Summary Thumbnails is also 
taller, however, length preservation would have required 
removing entire lines, and this resulted in pages that 
appeared to be incomplete. Our current prototype therefore 
preserves the total number of lines instead of the absolute 
length of the page. The resulting Summary Thumbnails are 
typically longer than the corresponding thumbnails. The 
actual length increase depends on the amount of text in the 

original page. For the 44 pages used in our user studies, the 
increase in length ranged from 0 to 83% (median 33%). In 
cases where neighboring columns contain different 
amounts of text, text growth can affect the vertical 
alignment at the bottoms of the columns. For web pages we 
looked at so far, the misalignment seemed acceptable. 
Omission of ellipses: It is common practice to replace 
removed content with placeholders [2] or ellipses to 
indicating the omission, yet we decided against that option. 
Due to the high degree of text reduction in Summary 
Thumbnails this would have add visual noise, be spatially 
expensive, and would render ellipses mostly meaningless 
given their ubiquity. 

Detailed description of our algorithm 
Here is a schematic overview of our algorithm. First, the 
page is loaded. Then all text that is smaller than a user-
defined threshold is enlarged. The result is a page that is 
still a wide as the original page, but now contains large 
text, e.g., about 19 pt for a page to be displayed on a PDA. 
Enlarged text typically occupies more lines than at its 
original font size. To preserve the line count, our program 
removes words until the total numbers of lines in the para-
graphs are preserved. The resulting page is then saved in 
HTML format for devices with scaling capabilities, or ren-
dered, scaled, and saved as a bitmap for all other devices. 
The following two paragraphs describe this process in ad-
ditional technical detail. 
The page is loaded and partitioned into elements 
(IHTMLElements, as defined in the Microsoft 
MSHTML library, msdn.microsoft.com) by recursively 
traversing the page’s Document Object Model (w3.org). 
Elements can be paragraphs of text, input boxes, option 
boxes, or other elements specified in a style sheet. 
To reduce the text, our prototype iterates through all 
elements of the page. For each element it performs the 
following steps: (1) Width, height, and font attributes are 
extracted. The number of lines of text is not directly 
available, so it is estimated as cell height/font height. 
(2) The text is extracted from the element and stored in a 
string. (3) The font of the string is enlarged. (4) First 
reduction: The width of the string is compared with a first 
estimate of the available space, i.e., width of the element 
multiplied by the number of text lines in the element. 
Lowest ranked words are removed until this space 
requirement is met. (5) Second reduction: If the element 
contains multiple lines of text, the string is broken to the 
width of the element. More words are removed until 
meeting these more stringent space requirements. (6) If the 
element has not enough room to even accommodate a 
single word, one word is selected and cropped to fit the 
space constraints. (7) The innerText property of the 
element is updated. For text that is separated by tags, the 
original element’s innerHTML property is traversed. 
Rather than replacing this text as a whole, all those words 
that had been removed from the string earlier are now 
removed from innerHTML, to preserve the original 



 

 

formatting. (8) Appropriate <font> tags are inserted to 
increase the font size of the text in the element. (9) The 
resulting page is exported as described above. 

QUALITATIVE USER STUDY 
Our first user study was a qualitative study. Its purpose was 
to solicit initial user responses to our design and obtain a 
sense of appropriate tasks for use in the following quantita-
tive study. 

Study Design 
Participants: We recruited 9 participants internally (7 
male). All were mobile device users. 
Interfaces: The participants used three different interfaces: 
a Thumbnail interface (Figure 2a), a Single-Column inter-
face (Figure 1), and a Summary Thumbnail interface 
(Figure 3). All interfaces were displayed on a laptop com-
puter using a viewer program that offered a net display area 
of 240x320 pixels for actual page content. All three inter-
faces allowed participants to scroll vertically through the 
web pages using the scrollbar. All interfaces fitted web 
pages to the screen width to remove the need for horizontal 
scrolling. Thumbnail and Summary Thumbnail interfaces 
were early design prototypes; while we explained the 
zooming capabilities to the participants, these prototypes 
did not yet support zooming; zooming support was not 
added until the quantitative study. 
Procedure: Participants were presented with the same news 
page (http://news.bbc.co.uk) displayed on the interfaces in 
random order. They were told to scroll through the page 
and pick a news story they deemed interesting and elabo-
rate on how it was represented on the respective interface. 
We encouraged participants to “think-aloud” during this 
process. For each interface, we conducted a brief interview 
and asked the participants to list pros and cons of the indi-
vidual interfaces, and what page types they expected each 
interface to be most and least suitable for. We asked addi-
tional questions about application scenarios using a ques-
tionnaire. Overall, the study took 45 minutes per partici-
pant. Participants received a minor gratuity for their par-
ticipation. 
Results 
Thumbnail interface: According to participants, the major 
advantages of the Thumbnail interface were that it pre-
served page layout (4 reports), that it provided an overview 
(8 reports), and that it provided a sense of branding (2 re-
ports). However, six participants said the text—and for 
some pages images as well—could end up being too small 
to be useful. Two participants expressed concerns about the 
need for zooming before the text information on the page 
could be read.  
Six participants judged the Thumbnail interface as useful in 
situations where the layout of the pages aided navigation, 
e.g., in maps and previously visited sites, or where the im-
ages conveyed enough information for decision-making, 
e.g., shopping sites that made heavy use of images. Seven 
participants judged the interface as inappropriate for pages 

that required users to actually read the page, as opposed to 
just scanning it (e.g., portal pages, lists of search results).  
Single-Column interface: Six participants rated the legible 
text offered by the Single-Column interface favorably, and 
one said he felt more confident before clicking a hyperlink 
using this interface than when using any of the other two 
study interfaces. Four participants liked that this interface 
avoided the need for horizontal scrolling. Eight complained 
about the altered layout and three participants described the 
transformed web page as being “ugly”, or “unrecogniz-
able”. Four participants expressed dislike for the large 
amount of vertical scrolling this interface required; one 
participant liked the fact that all information could be 
viewed by vertical scrolling only.  
Seven participants judged this interface as useful for linear 
reading (e.g., news, search results), and six said they found 
it inappropriate for tasks that relied heavily on the original 
layout of the page (e.g., map, bus schedules, and carefully 
designed pages). One participant expressed concerns that 
the Single-Column interface would be inappropriate for 
tasks that required users to compare different parts within 
the page (e.g., performing price comparisons while making 
a purchase decision).  
Summary Thumbnail interface: Eight participants found 
and liked that the Summary Thumbnail interface preserved 
page layout better than the other two interfaces. Seven 
mentioned the text in the Summary Thumbnail interface to 
be legible, and judged this superior to the thumbnail inter-
face. However, one participant was concerned that this 
interface would show too little text information for him to 
be able to select areas for further investigation and was 
concerned that the abbreviated text content offered by this 
interface might be misleading.  
All nine participants judged the interface as suitable for 
tasks that relied on the layout of the page (e.g., maps, ta-
bles, and professionally designed pages), but not for linear 
reading (e.g., reading of news articles or search lists). 

0

1

2

3

4

5

6

7

8

Specific keywords*

Specific images

Specific images with a caption*

Menu/navigational item

Specific area*

Fuzzy/vague information

Sc
or

e

Thumbnail
Semantic Thumbnail
Single Column
Summary

 
Figure 5: Questionnaire results. Scores are aver-
ages of 9 results (1=useless, 7=extremely useful, 
* one or more differences significant). 



 

 

Questionnaire results and overall preference: Figure 5 
shows the results of the questionnaire in which participants 
rated how appropriate they judged the individual browsers 
for six given types of web browsing tasks. We performed a 
Kruskal-Wallis test on the satisfaction ratings for the three 
browsers across the six task types, and found three signifi-
cant differences. The majority of participants judged the 
Summary Thumbnail interface as more useful than Thumb-
nail interface for keyword search (χ2=11.4, p=0.003) and 
captioned image searches (χ2=9.0, p=0.01), and more use-
ful than the Single-Column interface when looking for a 
specific area on a previously visited page (χ2=7.8, p=0.02). 
In the final ranking, 8 of 9 participants ranked the Sum-
mary Thumbnail interface first; one preferred the Single-
Column interface. 

QUANTITATIVE USER STUDY 
In this study, we evaluated the performance of the same 
three small screen interfaces (Summary Thumbnail, 
Thumbnail, and the Single-Column interfaces). In addition, 
we also included a web browser using a desktop-sized dis-
play window (“Desktop interface”) as a common reference. 
The participants’ task was to locate information in web 
pages originally designed for the desktop. Our main hy-
potheses were that the Summary Thumbnail interface 
would require less scrolling than the Single-Column inter-
face and less zooming than the Thumbnail interface and 
that this would lead to measurable task time and accuracy 
differences. The experiment was a within-subjects design 
with a single manipulation (Interface). The dependent vari-
ables were task time and error rate. In addition, we re-
corded zooming and scrolling events. 

Participants 
11 participants (7 males) from the local community were 
recruited for the study. Ages ranged from 23 to 52 years, 
median 42 years. All had prior experience with desktop 
web browsers, and 4 out of 11 of the participants had pre-
viously used a mobile device for web browsing. Two of 
them indicated that they preferred using a 2D spatial view 
with horizontal and vertical scrolling for web browsing on 
their PDAs while the other two preferred the single-column 
mode on their devices. 

Interfaces  
In the experiment, participants viewed web pages using the 
following four interfaces: a Thumbnail interface, a Sum-
mary Thumbnail interface, a Single-Column interface, and 
a Desktop interface. The first three were similar to the pro-
totypes used in the qualitative study reported earlier, but 
with additional interaction functionality. In addition to us-
ing the scrollbar, participants could now vertically scroll 
using keyboard or mouse wheel. The Thumbnail and 
Summary Thumbnail interfaces also allowed participants to 
zoom into a 1:1 scaled view of the original page by click-
ing the respective area in the thumbnail view as shown in 
Figure 3. While zoomed in, participants could scroll the 
page in all four directions by pressing the arrow keys on 
their keyboard or by using the scrollbars. The Desktop in-

terface displayed the original web pages without reformat-
ting or scaling, and only vertical scrolling was provided via 
scrollbar and keyboard. Single-column views were gener-
ated using an Opera browser supporting Small-Screen 
RenderingTM

 (opera.com). All four interfaces were able to 
display all pages used in the study without requiring hori-
zontal scrolling—horizontal scrolling occurred only in the 
zoomed-in views of the two thumbnail-based interfaces. 
All interfaces were presented on an 18” LCD screen run-
ning at 1280x1024 pixel resolution. As shown in Figure 6, 
the top area of the 818x827 pixel study environment con-
tained a textual description of the task, while the remaining 
display area was used to display the respective interface. 
For the thumbnail-based interfaces and the Single-Column 
interface, the window contained a simulated PocketPC de-
vice with a display area of 240x320 pixels. Since we in-
cluded the Desktop condition as an approximate upper 
bound on performance on these tasks, we did not intention-
ally limit the browsing space used by these interfaces. In 
fact, our Desktop offered a viewing space of 800x600 pix-
els (Figure 6b).  

a

b c  
Figure 6: Program used to administer the quantita-
tive experiment running the (a) Summary Thumb-
nail, (b) Desktop, and (c) Single-Column interface. 



 

 

Task 
Each trial started with a written task description displayed 
at the top of the study environment (Figure 6). When ready, 
the participant clicked a button to reveal the web page de-
scribed and to start the timer. The participant’s task was to 
locate the information described in the textual description 
and place a marker on that location. Markers were placed 
by clicking into that area or by dragging an existing marker 
with the mouse. Size and shape of the area considered a 
correct answer varied across pages, but all were large 
enough to allow easy placement of the marker. When satis-
fied, the participant pressed a button to complete the trial. 
Example: The page in Figure 6 shows an imdb.com review 
for the movie Shrek 2. The task description at the top of the 
window reads “You are thinking about renting a movie for 
the night, and remember your friend once recommended 
"Shrek 2". You want to see what the rating is before head-
ing to the video store. You have used this movie re-
view/database site in the past, so you went to the home 
page, searched for "Shrek 2" by name, and navigated to 
the following page. You expect to see the rating informa-
tion somewhere in the main section of the page, and you 
know they will be next to those bright yellow stars. <Click 
"Ready To Start" to look for the rating of the movie "Shrek 
2">.  
How these tasks were created 
To obtain a balanced set of web pages and a description of 
an actual information need we went through the following 
three-step procedure instead: 
First, we collected web pages and task descriptions by in-
terviewing 12 university student volunteers. These volun-
teers did not participate in the actual study. During the in-
terviews, the volunteers randomly selected three to five 
web pages from their recent browser history. For each of 
these pages, they told us why they visited the page, how 
they got to the page, and where they expected target infor-
mation to appear on the page before it was displayed. We 
gathered a total of 45 pages. Figure 7 shows Summary 
Thumbnails of some of these pages. 
Next, we manually aggregated the gathered information 
into task descriptions, each consisting of a web page and a 
brief task and background description. Figure 6 shows one 
example. 
Finally, we had two internally recruited pilot participants 
perform all 45 tasks using the desktop interface. We re-
moved a page because both pilot participants found its de-
scription ambiguous. Based on the pilot participants’ task 
times, we divided the remaining 44 pages into the four sets 
of 2 (training) + 9 (timed) trials, such that the sets balanced 
both average task time and page types (e.g., image, text 
box, main section of the page etc.). During the study par-
ticipants performed all four trial sets—each one on a dif-
ferent interface. Presentation order and the assignment of 
trial sets to interfaces were counterbalanced. 

 
Figure 7: Summary Thumbnails of seven of the 44 
pages used in the quantitative user study. 

Procedure 
At the beginning of the study, participants filled in a ques-
tionnaire with demographic information. Participants then 
completed 2 training and 9 timed trials using the first inter-
face, after which they filled out a short questionnaire about 
that interface. Then they repeated the procedure with a dif-
ferent sets of pages on the remaining three interfaces. The 
presentation order of pages and their assignment to inter-
faces was counterbalanced. Finally, participants were asked 
about their overall preference. 

Hypotheses 
Our hypotheses were: 
1. Displaying web pages in a way that preserves their 

original layout allows users to locate information 
faster and more accurately. For tasks where partici-
pants were able to find desired information based on 
page layout, we expected the desktop interface to per-
form best, followed by the Summary Thumbnail inter-
face, and the Thumbnail interface. The Single-Column 



 

 

interface should affect page layout more than the other 
interfaces and should therefore perform worse on such 
pages. 

2. The presence of readable text reduces the need for 
zooming navigation. We expected the Summary 
Thumbnail interface to require less zooming than the 
Thumbnail interface. The Desktop and the Single-
Column interfaces obviously required no zooming. 

3. Shorter pages require less scrolling. We consequently 
expected the Desktop interface to require the least 
amount of scrolling. Since Summary Thumbnails were 
slightly longer than the corresponding thumbnails, the 
Thumbnail interface should require less scrolling then 
the Summary Thumbnail interface. We expected the 
Single-Column interface to require by far the highest 
amount of scrolling. 

4. Effect of incomplete text fragments are tolerable. 
While incomplete text fragments on the Summary 
Thumbnails could potentially lead to misinterpretation 
and a higher error rate in those trials, we expected 
these effects to be minor. 

Results 
Unless otherwise stated, we used single-factor, Analysis of 
Variance to analyze the data. We performed post-hoc 
analyses with Bonferroni corrections for multiple tests to 
further explore significant main effects. We used an alpha 
value of p=.05 across all these tests. 
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Figure 8: Mean task times for each interface (+/- 
standard error of the mean).  

Task completion time 
Task time results are shown in Figure 8. ANOVA indicated 
a significant main effect of interface (F(3,40)=3.12, 
p=0.04). Post-hoc analyses showed that Summary Thumb-
nail trials were significantly faster than Single-column tri-
als. The difference was 41%.  
Task Accuracy 
Figure 9 shows the error rates, i.e., cases where participants 
had incorrectly placed the marker, thus failed to locate the 
intended target. 
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Figure 9: Error rates: percentage of erroneous trials 
across all 9 participants. 

Zooming 
Since there were only two interfaces that allowed zooming, 
an unpaired, two-tailed t-test was used to analyze the re-
sults. Participants zoomed 59% less often when using the 
Summary Thumbnail interface than when using the 
Thumbnail interface (t(20)=2.1, p<0.001, Figure 10). Three 
participants did not zoom in at all in the Summary Thumb-
nail trials. 
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Figure 10: Zooming event counts (+/- standard error 
of the mean). 

Zooming accuracy: Next, we looked at what percentage of 
participants’ zoom-in interactions were successful, i.e., the 
resulting detail view did contain the target area. The differ-
ence (62% with the Thumbnail and 51% with the Summary 
Thumbnail interface) was not statistically significant. 
Scrolling 
The vertical scrolling results are shown in Figure 11a. A 
single-factor ANOVA revealed a main effect of Interface 
(F(3,40)=12.5, p<0.001). Post-hoc analyses showed that 
the Single-Column interface required significantly more 
vertical scrolling than any of the other three interfaces 
(e.g., 6.9 times more than the Summary Thumbnails). 
When zoomed in, horizontal scrolling results are shown in 
Figure 11b. Participants scrolled 88% less horizontally 
when using the Summary Thumbnail interface than when 
using the Thumbnail interface (F(1,20)=15.3, p<0.001). 



 

 

We observed that participants scrolled back and forth when 
they had trouble orienting themselves. Scroll direction 
change results may therefore give a sense of participants’ 
level of confusion while searching for the targets (Figure 
11c and d). A single factor ANOVA of the scrolling data 
for the four interfaces revealed a main effect (F(3,40)=4.3, 
p<0.01) for the vertical direction change. Post-hoc analyses 
showed that this parameter is 4 times lower in the Sum-
mary Thumbnail than the Single-column trials. The Sum-
mary Thumbnail trials contained horizontal scroll direction 
change 82% less than the Thumbnail trials (t(20)=3.9, 
p<0.001).  
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Figure 11: Scrolling results. (a) total amount of ver-
tical scrolling for the interfaces (unit=1000 pixels); 
(b) total amount of horizontal scrolling while zoomed 
in (unit=1000 pixels); (c) total number of vertical 
scroll direction change events; (d) total number of 
horizontal scroll direction change events while 
zoomed in (TN=Thumbnail; ST=Summary Thumb-
nail; SC=Single-column; DT=Desktop). 
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Figure 12: Participant’s preferences for use on their 
personal browsing device 

Overall preference 
At the end of the study, we asked participants “Which of 
the three web browser: Thumbnail, Summary Thumbnail, 
and Single-column would you install on your mobile de-
vice?” As shown in Figure 12, nine out of 11 participants 
preferred the Summary Thumbnail interface (χ2(2)=12.2, 
p=0.002), while the remaining two selected the Single-
Column interface. 

DISCUSSION 
The results of the study indicated a strong participant pref-
erence for the Summary Thumbnail interface over the Sin-
gle-column and the Thumbnail interfaces on small screens 
when browsing web pages originally designed for the desk-
top. 
Our results suggest that better preservation of page layout 
can help participants browse. Trials using the Summary 
Thumbnail interface were 41% faster than those using the 
Single-Column interface where layout was considerably 
altered. Participants also made more mistakes when using 
the single-column interface than when using any of the 
other interfaces. Our observations during the study indicate 
that the layout conversion of the Single-Column interface 
may have affected participants’ ability to recognize some 
page elements, such as horizontal tabs or horizontal menus, 
as well as overall page structures. In fact, the Single-
Column trials contained more back-and-forth scrolling than 
all other trials, indicating that participants had difficulties 
in orientation. This confirmed our first hypothesis, wherein 
we postulated that layout information would help visual 
search.  
Our study results also supported our second hypothesis: 
layout information in itself is not always sufficient for lo-
cating content—readable text is required as well. By offer-
ing fragments of readable text, the Summary Thumbnail 
interface was able to reduce the amount of zooming by 
59% when compared to the Thumbnail interface. Three 
participants even located all trial targets without ever 
zooming into the detail view. Another indicator of direct 
access to target information was scrolling. Summary 
Thumbnail trials contained less horizontal scrolling and 
scrolling direction changed less often than in the Thumb-
nail trials. These results may indicate that participants 
could disambiguate the page content better using the Sum-
mary Thumbnails than with “plain” thumbnails. 
Interestingly, participants scrolled 51% less when using the 
Summary Thumbnail interface than when using the Desk-
top interface. While this result may seem surprising at first, 
it is easily explained: Since the Summary Thumbnail inter-
face (as well as the Thumbnail interface) was running in 
the “portrait” aspect ratio typical of handheld devices, it 
allowed participants to see more of the length of the page 
than the Desktop interface, which used a landscape aspect 
ratio. The differences in scrolling did not lead to any sig-
nificant effects in task time or error rate. Still, we are sur-
prised to see that the Desktop interface did not clearly out-
perform the Summary Thumbnail interface. One possible 
interpretation of this finding is that the reduced amount of 
scrolling and the reduced amount of text participants were 
confronted with on the Summary Thumbnail compensated 
for the obvious benefits of the Desktop interface. 
Our concern that text cropping in the Summary Thumb-
nails interface would lead to a higher error rate was not 
confirmed. Instead, participants made fewer errors with the 
Summary Thumbnail interface compared to the Single-
Column interface, where all of the original text was avail-



 

 

able. Also, participants seemed to find it easier to orient 
themselves with the Summary Thumbnail interface than the 
Single-Column interface, as indicated by the scroll direc-
tion change results. 
CONCLUSIONS AND FUTURE WORK 
In this paper, we presented Summary Thumbnails, a tech-
nique for displaying web pages on small screen devices 
that combines the benefits of thumbnail-based web brows-
ers with the benefits of readable text. Our user study results 
indicate that Summary Thumbnails were found to be more 
effective in supporting web browsing than the single-
column browsing technique that currently dominates the 
commercial market of small screen devices. Also, the vast 
majority of participants preferred Summary Thumbnails 
over traditional thumbnail views as well as single-column 
browsing. 
As future work, we plan to combine Summary Thumbnails 
with a more powerful zooming interaction (e.g., collapse-
to-zoom [2]) and the auto-cropping of photos [22]. In addi-
tion, we plan to explore the applicability of Summary 
Thumbnails for illustrating search results and as an alterna-
tive to the Thumbnail view in the file system viewer. 
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ABSTRACT 
Snapping is a widely used technique that helps users posi-
tion graphical objects precisely, e.g., to align them with a 
grid or other graphical objects. Unfortunately, whenever 
users want to position a dragged object close to such an 
aligned location, they first need to deactivate snapping. We 
propose snap-and-go, a snapping technique that overcomes 
this limitation. By merely stopping dragged objects at 
aligned positions, rather than “warping” them there, snap-
and-go helps users align objects, yet still allows placing 
dragged objects anywhere else. While this approach of 
inserting additional motor space renders snap-and-go 
slightly slower than traditional snapping, snap-and-go sim-
plifies the user interface by eliminating the need for a deac-
tivation option and thereby allows introducing snapping to 
application scenarios where traditional snapping is inappli-
cable. In our user studies, participants were able to align 
objects up to 138% (1D) and 231% (2D) faster with snap-
and-go than without and snap-and-go proved robust against 
the presence of distracting snap targets. 

ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 
Keywords: Alignment, snapping, snap-dragging, mouse 
input, pseudo haptics. blutwurst 
INTRODUCTION 
Sometimes users need to perform precise graphical ma-
nipulations. As shown in Figure 2, users increase visual 
clarity by aligning graphical objects with each other or by 
scaling table columns to the same width. They align audio 
and video segments to assure synchronicity and they make 
precise selections in bitmap images to make sure subse-
quent filters get applied to the right areas. 
Obtaining precise results by dragging or scaling an object 
with the mouse requires considerable motor skill. There-
fore, many computer applications help users align objects. 
Snapping (e.g., snap-dragging [5]) provides aligned posi-
tions with an attraction behavior sometimes described as 
“magnetism” [3] or “gravity” [5]. Figure 1a illustrates this 
with an example of a slider with a single snap location.  

traditional snapping

snap-and-go

inaccessible

snap location

inaccessible

b

snap location

a

enlarged in
motor space only  

Figure 1: (a) The problem: Traditional snapping 
warps the knob of this slider to the target whenever 
close, making it impossible to place the knob in the 
areas marked inaccessible. (b) The proposed solu-
tion: Snap-and-go inserts additional motor space at 
the snap location, thereby keeping all slider posi-
tions accessible. 

Whenever the user drags the knob into the area surround-
ing the snap location the knob is automatically “warped” to 
the snap location. Given that this attraction area is larger 
than the snap location itself, here five pixels instead of one, 
the alignment task is simplified significantly. 
The downside of snapping, however, is that this magnetic 
behavior can get in the user’s way. While users are often 
likely to use the recommended snap locations, there are 
cases where users want to place a dragged object else-
where. Continuing the examples from Figure 2: (a) To 
align the baselines of these text fragments, a user may need 
to move the right one down a little, but the grid keeps hold-
ing it back. (b) To fit a slightly longer word into this table 
cell, the user may need to widen that column just a bit, but 
it scales in steps causing the next column to overflow. 
(c) The user tries to make space to allow the following 
voice over clip start a little before the matching video seg-
ment, but scaling either snaps back or scales too much. 
(d) To remove the frame around this picture, the user tries 
to create a selection around it, but the lasso either snaps to 
the entire image or leaves at least two pixels out. In these 
and other scenarios, traditional snapping prevents users 
from accomplishing their task, every time the user tries. 
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In the following sections, we take a closer look at why this 
is problematic; present the snap-and-go alignment tech-
nique and explain how it avoids this problem; go over the 
related work; and report three user studies in which snap-
and-go was found to improve participants’ speed when 
aligning objects on the screen. We conclude with a sum-
mary of our findings and an outlook on future work.  
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Figure 2: Traditional snapping helps (a) align ob-
jects in a graphics editor, (b) created equally sized 
columns, (c) align audio clips with video clips, and 
(d) assure that the entire bitmaps was selected, 
(e-h) but gets in the way when users editing goals 
are not foreseen by the application designer. 

Traditional snapping requires deactivation 
In order to enable the non-alignment tasks above, tradi-
tional snapping requires application designers to provide 
snapping objects with an additional user interface that al-
lows users to disable snapping. This, however, turns out to 
be more complex than expected. 
A common approach is to allow users to de/activate snap-
ping by holding down a modifier key. However, the modi-
fier key approach is inapplicable if (1) the application is 
already using all modifier keys for other purposes, such as 
for switching tool options (e.g., Adobe Premiere), (2) there 
are more snapping constraints than modifier keys (e.g., 
Microsoft Visio), or (3) the target audience are non-experts 
and cannot be expected to discover modifier keys. 
In these cases, application designers are forced to revert to 
offering on-screen controls, such as a checkbox in a con-
text menu (Figure 3a). To improve discoverability, some 
application designers place checkboxes right into the visi-
ble user interface, even though this adds to the complexity 
of the interface (Figure 3b). In case there are too many 
snapping options, deactivation ends up in an options dialog 
(Figure 3c), again with low discoverability. 
As the participants of our user study confirmed, snapping is 
a useful and highly appreciated function. It saves users 
time with every use and enables users with limited motor 
skills to perform tasks they otherwise could not perform at 
all. The price, however, is additional user interface com-
plexity—potentially an additional checkbox per snapping 
function and time spent using it. Snap-and-go is designed 
to overcome this limitation. 
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Figure 3: Checkboxes for deactivating snapping in 
(a) Windows XP, (b) Media Player (c) and Visio. 

SNAP-AND-GO 
Snap-and-go is a snapping method that does not require 
deactivation. Figure 1b illustrates this with the example of 
a slider. Instead of reassigning motor space to snap loca-
tions, snap-and-go inserts additional motor space at the 
snap locations. This is done by reducing the input gain of 
the mouse while over the target. Rather than seeing the 
knob jump to the target, users feel that the mouse temporar-
ily stops at the target—thus the name of the technique, de-
rived from the expression stop-and-go. Visual feedback 
(e.g., Figure 14b) informs users about successful alignment. 
Unlike traditional snapping, snap-and-go does not require 
deactivation to allow users to avoid alignment. It achieves 
this by managing motor space differently. Traditional snap-
ping requires a deactivation option because its approach of 
redistributing motor space to the snap location leaves other 
locations with no representation in motor space, which 
renders these locations inaccessible. Snap-and-go’s ap-
proach of inserting additional motor space at the snap loca-
tion leaves the motor space of all other locations intact. 
Replacing traditional snapping with snap-and-go allows 
users to enjoy snapping functionality without the need to 
learn about modifier keys or to sacrifice screen space for 
checkbox interfaces (Figure 3). In addition, snap-and-go 
can be applied to applications that do not offer snapping 
today, such as to help users center audio balance or to drag 
the time slider in a DVD player to the beginning of a chap-
ter. These scenarios have no space for a deactivation inter-
face, which is why traditional snapping has never been 
applied to them. In its current version, snap-and-go is lim-
ited to platforms using an indirect input device—direct 
input devices, such as pens or touch input do not allow 
creating extra motor space. 

SNAP-AND-GO IN 2D 
The slider example given in the previous section is limited 
to one-dimensional drag interactions. Snap-and-go in 2D is 
similar to the 1D case in that they both insert additional 
motor space to hold dragged objects at aligned locations. In 
addition, however, alignment in 2D requires guiding 
dragged objects to aligned positions. While dragging an 
object in 1D will inevitably cross all locations between 



 

 

start and end position, dragging an object in 2D traverses 
only one path and therefore cannot guarantee that a 
dragged object will ever get to the aligned position in the 
first place. Since warping was the reason why traditional 
snapping required deactivation, we need an alternative 
mechanism for bringing the dragged object to the target. 
Snap-and-go in 2D is based on two basic widgets that ap-
plication designers can overlay over screen objects to help 
users align objects with them. Similar to the 1D case, these 
widgets manipulate motor space, but they contain additions 
to guide dragged objects to snap locations. To provide a 
basis for explaining the actual snap-and-go widgets (Figure 
5), we start by looking at the underlying concepts and evo-
lution history. These are illustrated by Figure 4. 
(a) The problem: The user’s task is to align the partially 
visible gray square at the bottom right with the two fully 
visible gray squares. This requires placing the square at the 
location marked with a dashed outline. The user’s drag 
direction (shown as a black arrow) would miss the aligned 
position. 
To make the following steps easier to illustrate, we switch 
to the visuals of a target acquisition task. We paint a knob 
labeled  onto the dragged object and a matching socket 
labeled  onto the position where the knob has to go in 
order to align the objects. Both are only for the purpose of 
illustration and are not visible to the user. 
(b) We add an invisible “funnel” over the socket. The “fun-
nel” consists of two invisible guides. As the user drags the 
square, the knob now hits the funnel and slides along that 
funnel until the knob gets trapped at the socket in the fun-
nel’s center and the user is provided with visual feedback 
confirming alignment (e.g., Figure 18). 
The funnel widget simplifies 2D alignment for two reasons. 
First, instead of having to simultaneously steer the mouse 
to precise x and y coordinates, the funnel widget requires 
users to only hit the entrance of the funnel and to follow 
through. The funnel thereby turns the 2D acquisition task 
the user would normally have to perform into a 1D acquisi-
tion task, also known as “crossing task” [1]. Second, the 
new target of the user’s task, i.e., the entrance of the funnel 
is significantly bigger than the single-pixel aligned position 
that the user would otherwise have to acquire. Application 
designers can configure this width by choosing a funnel of 
appropriate size. 
(c) Aligning the funnel and extending it into a cross. 
Dragged objects reach the funnel center fastest when mak-
ing contact with the funnel at a more obtuse angle. While 
an obtuse angle can be guaranteed by rotating the funnels 
towards the mouse pointer, we choose a stationary funnel 
aligned with the coordinate system of the screen. The bene-
fit of this is that it helps users align the dragged object in x 
or y or both, which is often useful. Duplicating the funnel 
for all four directions forms a cross widget (made of a hori-
zontal and a vertical guide), which allows users to align 
objects dragged when coming from different directions. 
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Figure 4: Evolution of snap-and-go in 2D 

(d) Minimizing side-effects by using ‘frixels’: When trying 
to drag an object to a different location on the screen, users 
may accidentally hit a cross widget on the way. To mini-
mize disturbance, we replace the solid guides of the cross 
widget with permeable ones. These are created using pixels 
that slow drag motion down—we call this friction. To ob-
tain the desired guidance effect we need pixels with direc-
tional friction (or “frixels"). The vertical guide in this ex-
ample consists of frixels with a horizontal friction of 3 and 
a vertical friction of 1, shown as pixels subdivided into 
three thinner subpixels. Crossing such a frixel with the 
mouse requires the user to move the mouse horizontally 
three times as far than a normal pixel would. This causes 
the path of the dragged object to be bent, guiding it through 
the snap location at the funnel center. At the funnel center, 
guides overlap and their friction values add up, here result-
ing in a center frixel with 3x3 friction. This frixel holds the 
dragged object for a moment, which helps users release it. 
(e) Frixel-based widgets create visual effects similar to 
solid widgets. To obtain a precise trajectory, snap-and-go 
tracks the position of the dragged object in terms of sub-
pixels. This extra information, however, is not presented to 
the user; a user dragging an object through a frixel widget 
sees the dragged object progress in terms of complete pix-
els. Figure 4e shows how the trajectory from Figure 4d 
appears to the user as a series of discreet events: the 
dragged object latches onto the vertical guide, it slides up 
two pixels where it reaches the aligned position, gets held 
there for a moment, and then slides along the horizontal 
guide for two pixels until it breaks free. 
We are now ready to explain the two widgets that form the 
basis of snap-and-go in 2D. The plus widget shown in 
Figure 5a is the basic widget for simultaneous alignment in 
x and y. It is based on the cross widget from Figure 4d, but 
it is of finite size and its friction is faded out towards the 
periphery to minimize the impact on trajectories not aiming 
for this target. The bar widget shown in Figure 5b is de-
signed for alignment in only one axis. It is made of tradi-
tional, non-directional friction, which avoids the here un-
necessary sideway-motion that directional frixels introduce. 
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Figure 5: The basic widgets of snap-and-go in 2D 
are (a) plus widget and (b) bar widget. 

More complex widgets can be created by combining basic 
widgets. The example shown in Figure 6a helps users snap 
a connector line to a rectangle on screen. While the corre-
sponding object based on traditional snapping (Figure 6b) 
allows users to connect only to edge centers (which can 
lead to undesired “elbows”), the snap-and-go widget allows 
users to also connect anywhere along the edge. 
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Figure 6: (a) This snap-and-go widget allows users 
to connect a connector line to edge centers, but 
also anywhere else on its edges. (b) The same wid-
get based on traditional supports only edge centers. 

The example widgets shown in this section feature friction 
values between 2 and 5. We chose these values to assure 
the readability of the diagrams. While friction values that 
low are possible (and we found significant effects for fric-
tion values as low as two), we found most users to prefer 
higher friction values (20-30, see the user study sections). 

RELATED WORK 
Snap-and-go builds on three areas of related work, i.e., 
alignment techniques, constraints and snapping, and ma-
nipulation of motor space/mouse gain. 
Alignment techniques in related work fall into two main 
categories. The first category contains techniques that are 
applied post-hoc, similar to traditional menu or toolbar-
based alignment functions: users pick two or more objects 
and then choose a function, such as “stack vertically” from 
a toolbar. The Alignment Stick [23] allows aligning objects 
by pushing a ruler against both objects—the moment the 
second object starts moving both objects are aligned. This 
approach can reduce the need for selecting alignment func-
tions repeatedly and thus save user effort. 
The second category consists of techniques that are applied 
while dragging the object to be aligned. The original snap-

dragging technique by Bier [5] allows users to create and 
place alignment objects; subsequently placed graphical 
objects then automatically snap to these alignment objects. 
By avoiding the need for an extra interaction step, snapping 
eliminates the overhead faced by explicit alignment func-
tions. Various researchers have added to the concept of 
snap-dragging by extending it to 3D [6, 2], adding anti-
gravity feedback to inform users when attempting to create 
an illegal connection [13], or changing snapping grids 
while dragging objects (HyperSnapping [20]). Snapping 
has been applied to a wide range of applications, including 
snapping and zipping windows together [4]. A particularly 
simple and thus widely used alignment object is the grid. 
The CAGE [2] extends grids such that they allow aligning 
graphical objects with each other. 
Another way of aligning objects is to describe the desired 
goal state using constraints [8]. Constraints are supported 
by a variety of toolkits, such as Juno [22] and their use 
reaches back as far as to Sutherland’s Sketchpad [24]. 
While initially created with text interfaces, some systems 
allow users to established constraints using snap-dragging 
(augmented snapping [11]). Similarly, [3] allows users to 
manipulate aligned groups without giving up alignment. 
Other researchers suggested creating alignment behavior by 
demonstration [18] or by generating several aligned ver-
sions and letting users pick (suggestive interfaces [14]). 
Snapping and constraints restrict the space where objects 
can be placed. Since this leads to the aforementioned prob-
lem of inaccessible space, snap-and-go inserts additional 
motor space instead. Manipulation of motor space has been 
studied in the field of pseudo haptics [17] and can be ap-
plied to any indirect pointing device. Lécuyer et al. showed 
that changing the coupling between mouse motion and 
mouse pointer motion can be used to simulate the haptic 
sensation of texture [16]. 
Changes in the mouse-to-pointer gain have also been used 
to help users overcome long distances and to acquire small 
targets, e.g., object pointing [12], and lay lines [15]. Ex-
panding targets (in screen space and motor space) [21] was 
found to help users acquire small targets. In combination 
with an area cursor, making targets “sticky” was found to 
help users with motor disabilities acquire small targets with 
the mouse (sticky icons [27], semantic pointing [7], also 
suggested by [25]). Unlike these methods, snap-and-go 
offers a method for guiding the user to very small targets, 
as we will discuss in more detail at the end of the following 
section. 

SNAP-AND-GO FOR TARGET ACQUISITION 
Target acquisition techniques are relevant to the topic of 
alignment, because an alignment operation can be reduced 
to a target acquisition task, (e.g., the “Snap-and-go in 2D” 
section above). Based on this similarity, we created an 
adapted version of snap-and-go that serves as a target ac-
quisition aid. As shown in Figure 7a, the plus widget re-
mains the same, only the visuals change: Rather than guid-
ing a dragged object to an aligned position, the cross wid-



 

 

get now guides the mouse pointer to the target. Note that 
plus widgets always guide the pointer to the target center, 
thus work across target sizes (Figure 7b). 
The snap-and-go target acquisition technique offers bene-
fits similar to the snap-and-go alignment technique: it al-
lows users to distinguish between multiple targets in close 
proximity, where other techniques, such as snap-to-target 
or area cursor [27] fail to distinguish between them. 

a b

 
Figure 7: Snap-and-go as a target acquisition aid. 

Note that the inverse is not true: a technique originally de-
signed to be a target acquisition technique cannot necessar-
ily serve as an alignment technique. Enhancing an align-
ment position with a sticky icon as shown in Figure 8a 
turns the acquisition task into a crossing task, which can 
simplify target acquisition [1]. Crossing that pixel, how-
ever, is still hard. Note that sticky icons cannot be used to 
make a cross widget (Figure 8b); their non-directional fric-
tion will not guide the dragged object to the target. Figure 
8c and d illustrate the difference: A sticky icon measuring 
only one pixel is easily missed. Snap-and-go guides the 
pointer or dragged object into the target, thereby creating a 
fisheye effect in motor space. 

c da b
 

Figure 8: (a, b) Attempt to use sticky icons to align 
objects in 2D. (c) Sticky icons vs. (d) snap-and-go 

IMPLEMENTATION 
We created two implementations of snap-and-go, i.e., a 
complete implementation in C# and a reduced prototype in 
Macromedia Flash that we use for running user studies. 
The Flash version supports 1D snap-and-go and the simpli-
fied version of 2D snap-and-go shown in Figure 4d. Figure 
9 illustrates how this prototype implements snap-and-go by 
subtracting friction at snap locations from traversed dis-
tances. A simple 2D cross widget can be obtained by run-
ning this code on x and y coordinates. (Note that this code 
is abbreviated for space reasons; it misses code for updat-
ing the mouse pointer to keep knob and pointer together, 
etc.). 
The C# version supports the more advanced versions of 2D 
snap-and-go described in this paper. The code is based on 
rectangular friction objects, each of which defines a fric-
tion gradient of configurable direction and strength. By 
combining multiple friction objects application designers 

can create arbitrary friction widgets, including the plus and 
the bar widgets and the example shown in Figure 6. By 
integrating friction along the interpolated pointer path, the 
program assures all traversed friction widgets will take 
effect, even in cases where the stepwise nature of mouse 
motion causes the pointer to jump over a widget without 
actually touching it. Pointer position is tracked in subpix-
els. This assures that users can traverse friction widgets 
even very slowly and at flat angles. Rounding errors would 
otherwise cause progress across the widget to continuously 
be rounded to zero, causing frixel widgets to appear solid. 

 

snapTo(x, w, snapX) {  
 if (snapAndGoActive) {  // snap-and-go 
  if (x >= snapX + w) 

  return x - w + 1; 
  else if (x > snapX) 
   return snapX; 
  else return x; 
 } else {      // traditional snapping 
  if (x > snapX - w/2 && x < snapX + w/2) 
    return snapX; 
  else return x; 
 }  
} 
 

Figure 9: Code fragment for 1D snap-and-go with a 
single snap location of width w located at snapX 
(top) in comparison to traditional snapping (bottom). 
The function returns the location of the dragged 
knob in dependence of the pointer position. 

USER STUDIES 
To objectively evaluate performance using snap-and-go, 
we performed a series of three user studies. The partici-
pants’ task in all three studies was to align a dragged object 
with a target location with pixel-accuracy. The studies dif-
fered in whether there was a single attractor at the target or 
multiple attractors, and whether alignment took place in 
one or two dimensions (Table 1).  

 Snap-and-go compared 
to traditional snapping… 

Snap-and-go 
with distractors… 

…in 1D Study 1 Study 2 
…in 2D   Study 3 

Table 1: Scope of the 3 studies reported below 

USER STUDY 1: SNAP-AND-GO VS. SNAPPING IN 1D 
The purpose of this first study was to verify that snap-and-
go indeed helps users align objects, to explore the impact 
of attractor strength on task time, and to compare snap-and-
go with traditional snapping. 

Task 
The participants’ task was to drag the knob of a slider to a 
highlighted target location as quickly as possible. Figure 10 
shows the apparatus, which consisted of a horizontal slider 
with a single highlighted target location, which in some 
conditions was complemented with an attractor (see be-
low). For each trial the slider was reinitialized to the shown 
state; target distance and attractor, however, were varied. 



 

 

Task time was counted from the moment the knob was 
picked up until the moment the knob was successfully 
aligned and the participant had released the mouse button. 
Each trial required successful alignment, so in cases where 
participants released the knob anywhere but over the target, 
they needed to pick it up again to complete the trial. 

 
Figure 10: The apparatus. The user’s task was to 
align the slider knob located at the left with the tar-
get located at the right. 

Alignment required pixel precision. To make that possible 
the knob was provided with the visuals shown in Figure 
11a. To prevent the mouse pointer from occluding the tar-
get, participants were encouraged to drag the mouse 
slightly downwards while dragging the knob (Figure 11c). 

Interfaces 
There were three main interface conditions, namely tradi-
tional snapping and snap-and-go, implementing the two 
snapping functionalities illustrated by Figure 1, as well as 
no snapping. 

b

ca  
Figure 11: Close-up of the knob reaching the target: 
A black dash at the bottom of the knob helped visu-
ally verify alignment. (b) Attractors used “light bulb” 
visuals and came in four sizes. (c) Dragging the 
knob into an attractor caused it to light up. 

In the no snapping condition, the target consisted only of 
the vertical red line shown in Figure 11a. In the snapping 
conditions, the target was complemented with an attractor, 
turning the target into a snap location. Attractors behaved 
differently depending on the snapping condition, but of-
fered the same visuals, a “light bulb” located below the 
slider (Figure 11b and c). In their inactive state light bulbs 
were black, but turned to bright green when the knob was 
captured. To inform participants during the study about the 
current attractor strengths, the width of the bulb on screen 
reflected the width of the attractor in motor space (Figure 
11a). Interface conditions thus differed in interactive be-
havior and visuals. 

Experimental design 
The study design was within subjects 2 x 4 x 4 (Snapping 
Technique x Attractor Width x Target Distance) with 8 

repetitions for each cell. Distances were 100, 200, 400, and 
800 pixels, and Widths 5, 10, 18, and 34 pixels. In addi-
tion, participants performed 2 blocks of trials with snap-
ping off at each distance. For each trial, we recorded task 
completion time and error, i.e., number of times the par-
ticipant dropped the knob before aligning it properly. Inter-
face order, distances, and sizes were counterbalanced. 
Participants received training upfront and at the beginning 
of each block. The study took about 35 min per participant. 

Apparatus 
The experiment was run on a PC running WindowsXP with 
an 18” LCD monitor, at a resolution of 1280x1024 pixels 
and 60Hz refresh rate, and driven by an nVidia graphics 
card. The interface used in this study was implemented in 
Macromedia Flash; its functioning was briefly described in 
the Implementation section of this paper. The optical Mi-
crosoft IntelliMouse was set to a medium mouse speed and 
participants were allowed to adjust it prior to the beginning 
of the study. 

Participants 
Nine volunteers, (7 male) between the ages of 25 and 50 
were recruited from our institution. Each received a lunch 
coupon for our cafeteria as a gratuity for their time. All had 
experience with graphical user interfaces and mice; three 
were trackball users. All were right-handed. 

Hypotheses 
We had three hypotheses: (1) Participants would perform 
faster with snap-and-go than with no snapping. 
(2) Stronger attractors and shorter distances would reduce 
task time. (3) Due to the additional distance in motor space, 
participants should be slightly slower when using snap-
and-go then when using traditional snapping. However, we 
expected the difference to be small. 

Results 
To correct for the skewing common to human response 
time data we based our analyses on the median response 
time across repetitions for each participant for each cell.  
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Figure 12: Task time by snapping technique and at-
tractor width across all distances (+/- standard error 
of the mean). 



 

 

Snapping vs. no snapping: We compared the most conser-
vative case for the two snapping conditions (attractor size = 
5) against no snapping for each distance. We performed a 3 
x 4 (Snapping Technique x Target Distance) within sub-
jects analysis of variance. There were significant main ef-
fects for both Snapping Technique, F(2,16)=66.3, p<<0.01 
and for Target Distance, F(3,24)=20.19, p<<0.01. Planned 
comparisons of no snapping vs. traditional snapping and 
vs. snap-and-go were also significant, F(1,8)=76.7, 
p<<0.001 and F(1,8)=61.5, p<<0.01 respectively. 
Snap-and-go vs. traditional snapping: We performed a 2 x 
4 x 4 (Snapping Technique x Attractor Width x Target Dis-
tance) within subjects analysis of variance. We found sig-
nificant main effects for each factor. As expected, tradi-
tional snapping was faster than snap-and-go F(1,8)=24.0, 
p<0.01. Also as expected, differences were fairly small, 
ranging from 3% for attractor widths 5 and 10 to 14% for 
attractor width 34 (Figure 12) 
Impact of attractor width and distance on task time: Not 
surprisingly, there were significant effects for Attractor 
Width, F(3,24)=97.6, p<<0.01 and for Target Distance, 
F(3,24)=224.4, p<<0.01; performance improved as attrac-
tor width increased and as target distance decreased. There 
were no significant interactions. Given the similarity to 
Fitts’ Law experiments, we compared user performance 
against the Fitts Index of Difficulty (ID), a metric that com-
bines target width and movement distance into one measure 
of acquisition difficulty [19, 10]. Figure 13 plots mean 
movement time for each ID for the two snapping tech-
niques. The regression of movement time against ID for 
each snapping technique was: 

Snapping:  MT=0.265 + 0.19*ID, r2=0.75  
Snap-and-go:  MT=0.487 + 0.159*ID, r2=0.59 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8

M
ov

em
en

t T
im

e 
(s

ec
on

ds
 ±

 S
EM

)

Fitts Index of Difficulty

Traditional Snapping

Snap-and-Go

 
Figure 13: Fitts analysis of task times. 

Note that the main divergence is at very low indices of dif-
ficulty. Once the task gets harder (e.g., longer movements, 
smaller attractor sizes) performance in the two techniques 
begins to converge. 

Error rates were generally low, indicating that the target 
and knob visuals did allow participants to visually validate 
alignment sufficiently well. Differences in the error rates 
for the three different snapping conditions were non sig-
nificant (No Snapping: 6.1%, Traditional Snapping: 3.7%, 
Snap-and-Go: 2.6%). 
Across snapping methods, eight of nine participants indi-
cated a preference for the stronger 34 and 18 width attrac-
tors; one participant preferred the weakest attractor strength 
included in the study (5). 

USER STUDY 2: IMPACT OF DISTRACTORS 
Experiment 2 was designed to investigate two questions. 
First, in the case of multiple potential targets (e.g., chapters 
along a DVD player time slider) should an application de-
signer provide each chapter with an attractor or would the 
additional attractors (distractors) get in the user’s way? 
Second, even with multiple attractors being present, users 
might at least occasionally want to target a non-enhanced 
location. How will distractors affect that? 
Task and interface were the same as in User Study 1, ex-
cept for the following two differences. First, in half of the 
trials there was an attractor over the target, while in the 
other half there was not. Second, there were up to four 
“distractors” located in front of and behind of the target as 
shown in Figure 14 (distances 64, 32, and 16 pixels in 
front, and 16 pixels behind target, see Figure 14). 

a b  
Figure 14: Attractor/distractors: (a) Attractor at tar-
get and all four distractors (width 10). (b) No target 
attractor, but three of the four distractors. 

In this study, we only included snap-and-go but not tradi-
tional snapping. The reason is that for some distractor com-
binations traditional snapping would have required deacti-
vation (e.g., Figure 14b) and deactivation interfaces were 
outside the scope of this study. 
To keep the overall study time manageable, we limited the 
design to a single distance and two attractor widths. The 
resulting design was a (2 x 2 x 2 x 2 x 2 x 2) (Target At-
tractor on x Distractor 1 x Distractor 2 x Distractor 3 x 
Distractor 4 x Attractor Width) with 4 repetitions for each 
cell.  
Nine participants hired from the community (6 male) be-
tween the ages of 18 and 60 participated in the study. All 
were right-handed. 

Results 
The full factorial analysis was very difficult to interpret 
because of interaction effects. Initial results showed no 
significant effect for distractor position, so we simplified 
the analysis by combining the four binary Distractor vari-



 

 

ables into a single variable, Number of Distractors (0, 1, 2, 
3, or 4). We then did two analyses: one for when the Target 
Attractor was on, and one for when it was off. 
Target with attractor: We performed a 5 x 2 (Number of 
Distractors x Attractor Width) within subjects analysis of 
variance. As expected, there was a significant effect for the 
Number of Distractors, F(4,32)=5.1, p<0.01 (Figure 15). 
Interestingly, in this condition, there was no main effect for 
the width of the attractor or an interaction. This might indi-
cate that the additional attraction caused by a larger attrac-
tor was at least partially compensated for by the equally 
larger distraction caused by larger distractors. 
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Figure 15: Task times with attractor at target and 0-
4 distractors. 

Target without attractor: We performed the same analysis 
for trials in which the target had no attractor, but there were 
still up to four distractors. This time the only significant 
effect was for Attractor Width (of the distractors). Unlike 
the case with an attractor at the target, there is no tradeoff 
here, so larger distractors impacted task time more. There 
was no main effect for the Number of Distractors or a sig-
nificant interaction (Figure 16). 
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Figure 16: Task times without attractor at target and 
0-5 distractors 

These results provide some indication for deciding how 
many locations to provide with an attractor: successfully 
providing a target with an attractor saves users an average 
of 1.9 seconds per alignment interaction; the addition of 
four snapping locations not targeted by the user causes a 
penalty of less than 0.5 seconds. 

USER STUDY 3: SNAP-AND-GO IN 2D 
In our third study, we replicated the first two experiments 
for an alignment task in two dimensions. In this experiment 
each participant performed two tasks, the first being the 2D 
equivalent of the first user study, and the second being the 
2D equivalent of the second user study. The study took 
participants about an hour to complete. 

Task and interfaces 
In both tasks, the participants’ task was to align a square 
with two other squares as illustrated by Figure 17.  

a b c  
Figure 17: Task 1 of the 2D study. Participants 
aligned the dark square with the two lighter squares 

Figure 18a illustrates the individual elements on the screen. 
Depending on condition, there were up to six line-shaped 
attractors. Three vertical attractors at the target location and 
10 and 60 pixels right of it, three horizontal attractors at 
and below the target location. In the snap-and-go condi-
tions attractors implemented the simplified snap-and-go 
behavior described in Figure 4d. Upon contact with the 
edge of the dragged rectangle attractor lines changed colors 
from black to green and displayed a white, 10-pixel wide 
halo. A light bulb at the end of each line informed partici-
pants about the current attractor strengths. The top left cor-
ner of the dragged rectangle was provided with a cross of 
1-pixel lines to help visually verify alignment. 

a b 45
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Figure 18: (a) Apparatus used in the 2D study. 
(b) The four start locations of the square. 

Task 1: In correspondence to the first user study, only the 
two attractors aligned with the target were present (Figure 
17). The design was within subjects 2 x 4 x 4 (Snapping 
Technique x Attractor Width x Approach Angle) with 8 
repetitions for each cell. Distance to the target was 200 
pixels and approach angles were 0, 15, 30, and 45 degrees, 
as shown in Figure 18b. Participants also performed 2 
blocks of trials with snapping off at each distance.  
Task 2: The design was within subjects 2 x 2 x 2 x 2 x 2 x 
2 (Target Attractor Vertical x Target Attractor Horizontal x 
Distractor Vertical10 x Distractor Horizontal10 x Distrac-



 

 

tor Vertical60 x Distractor Horizontal60) with 4 repetitions 
per cell. This means that the target was enhanced with only 
the horizontal attractor, only the vertical attractor, both, or 
none. In addition, up to four distractors were located at the 
locations described above. Drag distance was always 200 
pixels and all trials started at the 30 degree approach angle. 
To prevent sequence effects on Task 1 caused by unbal-
anced training, all participants performed Task 1 first. 
Participants: Eleven volunteers (11 male) recruited inter-
nally participated. The average age was 31 years (std dev 
8.0); all were right-handed. 
Hypotheses corresponded to the 1D case. However, the 
cross widget used in the study causes more sideways drift 
than a combination of plus and bar widgets. We therefore 
expected distractors to have a slightly bigger impact. 

Results 
Task 1: snap-and-go vs. traditional snapping 
As in previous experiments, we based our analyses on the 
median response time across repetitions for each partici-
pant for each cell. We performed a 2 x 4 x 4 (Snapping 
Technique x Attractor Width x Approach Angle) within 
subjects analysis of variance. 
Traditional snapping was significantly faster than snap-
and-go, F(1,10)=13.1, p<0.01 (Figure 19), and there was a 
significant effect for Attractor Width, F(3,24)=97.6, 
p<<0.01; performance improved as attractor width in-
creased. There were no significant interactions or main 
effect for Approach Angle. 

Performance vs. no snapping 
We compared the most conservative case for the two snap-
ping conditions (attractor size = 5) against no snapping for 
each distance. We performed a 3 x 4 (Snapping Technique 
x Target Angle) within subjects analysis of variance. There 
was a significant main effect for Snapping Technique, 
F(2,20)=67.7, p<<0.01. Planned comparisons of no snap-
ping vs. traditional snapping and vs. snap-and-go were also 
significant, F(1,10)=85.4, p<<0.001 and F(1,10)=60.0, 
p<<0.01 respectively. See Figure 19. Again, there was no 
significant effect for Target Angle.  
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Figure 19: Task times in 2D by snapping method 
and attractor width. 

Again, error rates were generally low. Differences in the 
error rates for the three different snapping conditions were 
not significant (No Snapping: 5.1%, Traditional Snapping: 
3.7%, Snap-and-Go: 4.5%). 
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Figure 20: Response times for 2D distractor task 
with 0-4 distractors for each level of target attractor. 

Task 2: 2D Distractor Task 
As in experiment 2, the full factorial analysis was very dif-
ficult to interpret because of interaction effects. Initial re-
sults showed no significant effect for distractor position, so 
we simplified the analysis by combining the four binary 
Distractor variables into a single variable, Number of Dis-
tractors (0, 1, 2, 3, or 4). In addition, the two Target Attrac-
tor variables were reduced to 1, Number of Attractors (0 to 
2). 
We performed a 3 x 5 (Number of Target Attractors x 
Number of Distractors) within subjects analysis of vari-
ance. As expected, there was a significant effect for the 
Number of Distractors, F(4,40)=3.7, p<0.01, with move-
ment time steadily increasing with the number of distrac-
tors (Figure 20).There was also a large main effect for 
Number of Target Attractors, F(2,20)=69.8, p<<0.01. As 
the number of target attractors move from 0 to 1 and then 
up to 2, performance improved markedly. There were no 
significant interactions. 

DISCUSSION 
In the three studies presented above, we covered snap-and-
go in one and two dimensions. Across conditions, partici-
pants were significantly faster with snap-and-go than with-
out snapping support. For the largest attractor width speed-
ups were 138% in 1D and 231% in 2D. As expected, the 
additional motor space snap-and-go caused it to be slightly 
slower then traditional snapping, with differences of 3% in 
1D and 14% in 2D. Snap-and-go turned out to be fairly 
robust against the presence of distractors. 

Resulting design improvements 
With traditional snapping, dragged objects are visibly 
warped when latching-on. During the first 1D study, some 
participants expressed how this visual cue helped them 
verify alignment. We therefore created a version of snap-
and-go visuals that emulates warping using anticipation 
behavior [26, 9]: when latching on, the knob briefly over-



 

 

shoots and returns to the snap position; similarly, the knob 
first moves backwards when breaking free. We also created 
a version were the knob behaves as if dragged over little 
vertical barriers left and right of the snap location. 
We also observed that switching from a traditional snap-
ping condition to a snap-and-go condition caused some 
participants to converge particularly slowly towards the 
snap location—waiting for it to latch on. Since snap-and-
go requires users to drag the knob past the apparent snap 
location, hesitant dragging continued all the way to the 
actual snap location, which affected task time. Figure 21 
shows a redesign with corrected visual affordance. Here 
attractors are displayed behind the snap location. At the 
expense of introducing additional motion, this design also 
updates users about their location in motor space by mov-
ing the attractor against the mouse motion as the user 
passes it. 

 
Figure 21: Redesigned attractor visual that always 
appears behind the target. 

CONCLUSIONS 
In this paper, we presented snap-and-go, an alignment tech-
nique that—unlike traditional snapping—does not require 
deactivation. While slightly slower than traditional snap-
ping, the ability to omit the deactivation interface allows 
deploying snap-and-go in application areas where addi-
tional interface complexity would be prohibitive. 
We made three main contributions. First, we demonstrated 
how manipulations of mouse gain can help users align ob-
jects. Second, we extended our technique to 2D by intro-
ducing the plus and the bar widgets that guide dragged 
objects to snap locations. And third, we presented three 
user studies evaluating snap-and-go in 1D and 2D in com-
parison with traditional snapping and no snapping. 
As future work we plan to extend the snap-and-go concept 
to indirect pointing devices, such as pen and touch input. 
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