

Back-of-Device Interaction Allows Creating
Very Small Touch Devices

Patrick Baudisch and Gerry Chu
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

baudisch@.microsoft.com, gerry@gerrychu.com

ABSTRACT
In this paper, we explore how to add pointing input capa-
bilities to very small screen devices. On first sight, touch-
screens seem to allow for particular compactness, because
they integrate input and screen into the same physical
space. The opposite is true, however, because the user’s
fingers occlude contents and prevent precision.
We argue that the key to touch-enabling very small devices
is to use touch on the device backside. In order to study
this, we have created a 2.4” prototype device; we simulate
screens smaller than that by masking the screen. We present
a user study in which participants completed a pointing task
successfully across display sizes when using a back-of de-
vice interface. The touchscreen-based control condition
(enhanced with the shift technique), in contrast, failed for
screen diagonals below 1 inch. We present four form factor
concepts based on back-of-device interaction and provide
design guidelines for extracted from a second user study.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. Input devices and strategies;
B 4.2 Input Output devices
Keywords: back-of-device interaction, nanoTouch, lucid-
Touch, mobile, touch, pointing. blutwurst
INTRODUCTION
In this paper, we explore the question of how to provide
very small screen devices with pointing input capabilities.
Pointing input is crucial for many mobile applications from
the efficient selection of links in a web page to the ability to
play interactive real-time games. With very small we con-
sider the following range. At the larger end, we look at de-
vices with screens diagonals around 2.5” (6.3cm): devices
designed for use during physical activities as well as tangi-
ble screen devices (e.g., siftables, 2” screens [13]). At the
smaller end, we look at the truly tiny screens used in acces-
sories, such as smart watches (e.g., Palm Watch) or elec-
tronic jewelry (e.g., [10]). The latter can be as small as a
fraction of an inch. While diminishing screen size has many
impacts on overall usability, e.g. readability, in this paper
we focus exclusively on the interaction.

Figure 1: Back-of-device touch input can enable pointing input
on very small screens. This enables building new types of de-

vices, such as touch-capable electronic jewelry.

Recently, we have seen a departure from devices using key-
pads and d-pads (Figure 2a) towards devices using touch-
screens. Touch screens allow for efficient pointing input,
and by eliminating the need for a keypad they allow for a
comparably compact enclosure.
Intuitively, one might think that this would be a step for-
ward towards achieving higher miniaturization (Figure 2b).
Unfortunately, the opposite is true. The selection point on
touch screens is ambiguous, because of the size and soft-
ness of the user’s fingertip. Since the finger occludes the
target area, users are required to target without visual feed-
back. This fat finger problem [20] makes the selection of
small targets difficult and error-prone. Device designers
address the problem most commonly by enlarging targets to
approximately finger size. Unfortunately, this typically re-
sults in devices even larger then the more traditional d-pad
devices (Figure 2c, e.g., iPhone).

a

d

b

c

pointer

Figure 2: Pointing input on mobile devices using (a) separate

d-pad, (b) touch screen of corresponding size (fat-finger prob-
lem!), (c) larger touch screen of usable size, and (d) back-of-

device touch input.

Back-of-device interaction [7, 21, 26, 25] avoids interfer-
ence between fingers and screen by keeping the user’s hand
on the back of the device, a space historically unused
(Figure 2d). A pointer on screen informs users about the
position of the finger on the back (pseudo transparency
[24]). Apart from that, screen contents remain visible and
occlusion-free.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Submitted to CHI 2009, April XX–YY, 2005, Boston, MA, USA.
Copyright 2006 ACM #…$5.00.

a

c

b

Figure 3: Three of the back-of-device designs we envision

(a) clip-on with 2.4” screen (b) watch with 1.2” screen, and
(b) ring with a screen diagonal of less than half an inch. These

concepts reflect the screen sizes we used in our user study.

In this paper, we explore whether back-of-device interac-
tion can enable pointing on very small touch devices. Figure
1 and Figure 3 show four devices that we are envisioning
and that use back-of-device input across different degrees
of smallness. These concepts inform the screen sizes we
used in our user study.
In order to explore this design space, we have created a
prototype device we call nanoTouch (Figure 4). It features
a 2.4” screen, like the clip-on design shown in Figure 3a.
We simulate screen sizes below 2.4” by masking the device.
Using this device, we ran a user study comparing back-of-
device touch input with front-side touch input augmented
with the shift technique [23]). We found that back-of device
input continues to work for screen diagonals below 1 inch,
while front-side input does not. We report the results of a
second user study in which we quantify task times and error
rates of back-of-device interaction. Based on these findings,
we define design guidelines.

Figure 4: The nanoTouch device offers a 2.4” screen. A dot-

shaped pointer corresponds to the touch location on the back.
(In the shown mode, the device facilitates discoverability by

simulating transparency, see section “pseudo transparency”).

RELATED WORK
This paper is related to targeting, touch input on small-
screen devices, and back-of-device interaction.

Increasing targeting accuracy
In order to help users acquire small targets, researchers
have proposed a variety of ways of enlarging targets, such
as by zooming manually (e.g., double tapping [1, 18] or
rubbing [14]) or automatically (expanding targets [12]).
Other techniques enlarge targets in motor space only, e.g.,
by snapping the pointer to a target. Starburst [3] extends
the concept to non-uniform target distributions. Escape
combines snap-to-target with marking [27]. A similar effect
can be accomplished by enlarging the pointer instead
(prince technique [9], bubble cursor [6]) or by slowing the
pointer down when high accuracy is required (high preci-
sion touch screen [19]).

Target ambiguity and occlusion on touch screens
Several solutions have been proposed to overcome the fat
finger problem. Styli offer a precise tip and remove the
user’s hand from the target surface. A downside of styli is
that introduce an additional physical object that users need
to retrieve before use [23].
Software techniques designed to address the fat finger prob-
lem shift finger and target away from each other. Offset
cursor [15] creates a software pointer a fixed distance
above the finger’s contact point and has therefore been re-
ferred to as a software version of a stylus [23]. Offset Cur-
sor uses take-off selection [15,17] in which the target is
selected at the point where the finger is lifted rather than
where it first contacted the screen. On the flipside, the input
area needs to be extended beyond the screen in order to
prevent part of the screen from becoming inaccessible. On a
screen measuring half an inch high, adding half an inch of
space effectively doubles the device size (Figure 5a). De-
vices offering a touch pad on the device front are impacted
in a similar way.

offset

a

shift

b

Figure 5: (a) Offset cursor and (b) shift on a device with a very

small screen.

Shift [23] alleviates this limitation. Users can operate shift
like a regular touch screen. If users require high precision,
however, they can trigger a special precision mode by dwel-
ling. Shift then “escalates” and displays a “callout” mirror-
ing the area currently hidden under the user’s finger as
shown in Figure 5b. Since the callout is placed dynamically
in dependence of the touch location, it can always be con-
tained within the screen area and without additional device
space. Because of these benefits, we chose shift as the con-
trol condition in User Study 1.

Back-of-device interaction
Several researchers have proposed moving the interaction
to the back of the device as means to eliminate occlusion.
BehindTouch [7] and BlindSight [11] place a 12-key pad on
the backside of a mobile phone. HybridTouch [21] allows
users to scroll by performing drag gestures on a touch pad
mounted on the backside of a PDA. Wobbrock enabled
EdgeWrite on the backside of a similar device [26].
Wigdor et al. touch-enabled the bottom of their tabletop
display [25]. Unlike HybridTouch, the touch surface in un-
der the table interaction is operated in absolute mode,
mapping every location on the back 1:1 to the directly op-
posing spot on the front.
This first generation of back-of-device interaction elimi-
nated the occlusion of contents by the user’s fingers. In
exchange, however, they caused the user’s fingers to be
occluded by the device. While eyes-free use works fine for
gestures [26], it turned out to cause large error rates when
targeting ([25] requires 4.5cm targets).
LucidTouch [24] addresses the problem by introducing
pseudo-transparency, a concept borrowed from augmented
reality [2]. The device creates the illusion of a transparent
device by overlaying a video image of the user’s fingers
(Figure 6), creating a visual effect similar to VideoDraw
[22]. Users interact based on pointers images tracking with
the user’s fingertips. This allows for precise manipulation
independent of finger size. A more recent system, Limpi-
Dual Touch [8] creates a similar effect using physical see-
through.

Figure 6: The LucidTouch prototype contains a 7” screen. The

user’s hands are tracked by a camera on a 12” boom.

THE NANOTOUCH DEVICE
Our initial plan was to use a lucidTouch device for our
studies. Pilot studies, however, indicated that its size and in
particular screen and bezel thickness were impacting target-
ing. This meant that study results obtained with this proto-
type would not necessarily transfer 1:1 to the space of very
small devices. We therefore redesigned the device, resulting
in the nanoTouch prototype shown in Figure 4 & Figure 7.
In order to achieve the desired size, we made several sim-
plifications compared to lucidTouch. We decided that mul-
ti-touch would be less crucial for a device barely large
enough to fit two fingers at the same time. Dropping multi-
touch allowed us to trade in the camera, the boom, and the

multi-touch pad for a capacitive single-touch pad. The re-
sulting device supports the same three aspects that distin-
guished the original LucidTouch from its predecessors, i.e.,
1:1 absolute mapping between input and screen, three states
(out-of-range, tracking, and dragging), and a simplified
version of pseudo-transparency.
Although we have explored some one-handed form factors,
we designed the prototype primarily for bimanual use, as
shown in Figure 1 and Figure 4. In this section we give a
brief overview of the device, which we used to run both
user studies reported in this paper.

Figure 7: The nanoTouch prototype. The capacitive trackpad

on the device backside is mapped 1:1 to the screen, a
320x240px, 2.4” OLED screen.

Tracking state = touch
Lacking a camera, the new device cannot sense whether a
hand is hovering over the device backside. In order to still
offer the required three states (out-of-range, tracking, and
dragging [4]) we added pressure sensitivity to the pad and
remapped the 3 states as shown in Figure 8: Touching the
device results in tracking; users enter the dragging state by
pressing.

 lucidTouch nanoTouch
out-of-range no hands hovering/no hands
tracking hovering touching
dragging touching pressing

Figure 8: The three states of old and new prototype

This pressure sensing mechanism consists of a ring of elas-
tic silicone located under the edge of the touch pad. It com-
presses under pressure and eventually establishes contact
with a conductive path. When pressed, a solenoid inside the
pad provides a brief auditory and tactile feedback confirma-
tion, similar to the sensation produced by a micro switch.
Earlier designs based on one or more micro switches had
led to uneven clicking behavior.
In the default absolute mode, the touch pad maps 1:1 to the
screen, operating like a (reversed) touch screen. Applica-
tions expecting relative (mouse) input, such as the shooter
game shown in Figure 9 run the device in relative mode.
This causes the device to function like a mirrored version of
a track pad, as found in a standard notebook computer. The
pressure mechanism is calibrated to require a comparably

small amount of pressure. This allows for fatigue-free drag-
ging, as required for steering activities, such as image re-
touching or when playing interactive video games.

Figure 9: First person shooter running on nanoTouch through

the prototyping environment (Unreal Tournament 2004)

Quasi modes using thumb buttons
To allow users to trigger discrete functionality, we mounted
two buttons at the bottom left corner of the device (bottom
right corner for left-handed users) as shown in Figure 10.
This placement allows the button to be operated using a
rocking motion of the thumb of the non-dominant hand—
while holding the device. Users can also hold down the
buttons, which allows them to work as qualifier keys and
thus to implement quasi modes [29]. We found this to work
reliably and over extended periods of time. We have also
used thumb buttons as a more ergonomic (even though less
discoverable) alternative to pressing the touchpad and as
left and right buttons when emulating a mouse. Another
pair of buttons in the opposite corner of the device is avail-
able for auxiliary use.

left
right

Figure 10: Thumb buttons are operated by the hand holding

the device

Pseudo-transparency
One of the most useful details of lucidTouch was its natu-
ralistic implementation of pseudo-transparency. Picking up
the device with one or two hands caused an outline of these
hands to show up on the screen, suggesting the screen was
indeed transparent. This dramatically contributed to discov-
erability—first-time users instantly “grasped” the concept.
To offer a similar type of experience despite the absence of
the camera, the new device hallucinates an overlay based on

the (x,y) coordinates of the finger received from the touch
pad and a pre-rendered image of a finger. Figure 4 shows
the default setting. Different users can fit the overlay to
their needs by tweaking posture, finger size, and skin color.
Several details reinforce the sensation of transparency: The
user's finger is rendered in front of the background, but
behind the translucent buttons, suggesting a stacking order.
Pressing is visualized by overlaying the user’s fingertip
with a white tip, suggesting that blood is being pressed out
of the finger tip (Figure 11). The bitmap image of the finger
was taken while the finger was pressed against a glass pane.
A fake white reflection in the top left corner of the screen
hints the existence of a glass surface in the device.

a b
Figure 11: (a) The user’s fingertip (b) turns white when pressed

In our experience, naturalistic pseudo-transparency simpli-
fies discoverability and enables walk-up use where it would
otherwise be impossible. Once users understand the con-
cept, however, many applications will use a less naturalistic
notion of pseudo-transparency—in the simplest case noth-
ing but a dot-shaped pointer.

Development environment
Our nanoTouch prototype is tethered to a PC. This facili-
tates prototyping and reduces the amount of hardware in the
device, allowing for a smaller form factor. The PC recog-
nizes the device as an external screen connected via DVI.
Arbitrary Windows application can be run on the device by
scaling the application window and placing it in the screen
area mirrored on the device. The touch pad is connected to
the PC via USB. It sends mouse move events and commu-
nicates touch and button presses as key press events.

Resulting size
The use of an OLED display (2.4”, 320x240px, 166dpi)
eliminates the need for a backlight and further reduces de-
vice thickness. The resulting device measures 67x47x10mm.

USER STUDY 1: BACK VS. SHIFT ON SMALL SCREENS
In order to verify our assumption that back-of-device inter-
action is the key to pointing input on very small devices, we
conducted a controlled experiment. There were two inter-
face conditions: back-of-device touch interaction and front-
side touch interaction enhanced with the shift technique.
The task was to select a 1.8mm square target displayed on
the built-in screen. Screen sizes varied between diagonals
of 2.4” (64mm) and 0.3” (8mm). Our main hypothesis was
that the back-of-device interface would work across all
screen sizes, while the front-side condition would fail for

screen sizes below a certain threshold. We were also inter-
ested in finding that threshold.

Screen sizes
There were four screen size conditions: 2.4”, 1.2”, 0.6”,
and 0.3” (320x240px, 160x120, 80x60, and 40x30 respec-
tively). The 2.4” condition was implemented using the full
screen of a nanoTouch device. The smaller screen condi-
tions were implemented by masking the screen in software,
as shown in Figure 12 (physical masking had impacted
tracking in the shift condition during pilots).

Figure 12: We simulated smaller screens, such as this 1.2”

condition by masking the screen in software.

Interfaces
There were four interface conditions, all of which were
implemented on a nanoTouch device.
In the two back conditions, participants provided pointing
input via the device backside. The device was run in abso-
lute mode. To eliminate variation due to differences in tar-
geting strategy, participants were encouraged to keep their
index finger in contact with the device at all times.
The back condition was broken down into two sub-
conditions for the method of committing. In the back-press
condition, participants committed selections by pressing the
touchpad. The target location was determined on release. In
order to minimize tracking errors, we applied a filter re-
moving the last 80ms of move events before the “up” event,
as suggested by [5]. In the back-button condition, partici-
pants committed selections bi-manually by pressing and
releasing the corner thumb button using the non-dominant
hand holding the device. This version was inspired by a
study of Li et al, which suggests that mode switching with
the non-dominant hand offers performance benefits [30].
In the two shift conditions, participants acquired targets
using the shift technique described earlier. These conditions
were implemented by overlaying a clear touch screen onto a
nanoTouch device (a 3M MicroTouch 6.7” as shown in
Figure 13). The device was rested against the edge of a
table to prevent the weight of the touch overlay from caus-
ing fatigue.
We ran the original shift code published in [23], adjusted to
render at original scale on the high-dpi lucidTouch screen.
The 2.4” and 1.2” screen size conditions used the original
settings: a 16mm callout presented at an 11mm offset. For
the two smaller screen size conditions, we reduced callout

diameter and offset to fit the callout into the screen. This
resulted in a 11mm callout at 8mm offset in the 0.6” condi-
tion and a 4mm callout at 4mm offset in the 0.3” condition.
We also optimized the layout algorithm for the tiny screens,
always placing the callout in the quadrant opposite of the
initial touch location. Participants operated the shift condi-
tion using their finger tip. For the 1.8mm target size used in
the study shift escalated instantly.

Figure 13: The shift conditions were run on a nanoTouch de-
vice with an overlaid touch sensor, here in the 2.4” condition.

There were two shift sub-conditions: when using shift-
takeoff, users committed by lifting their finger off the
screen, as described in the original paper. Improving on the
published algorithm, we added the same filter used by the
back condition: upon takeoff, all mouse movements occur-
ring during the last 80ms were removed. In the shift-button
condition participants committed using the thumb button.

Task
Participants performed a target acquisition task similar to
that the one described in the original shift paper [23]. Par-
ticipants started each trial by tapping a start button. This
removed the start button, displayed the target (red square,
12px/1.8mm), and started the timer. Now participants
placed the pointer over the target and committed using
press, take-off, or button press, depending on interface con-
dition. This stopped the timer. Targets turned light red on
hover (with back) and light blue on press (both back and
shift). If a target was selected correctly, a clicking sound
was played; otherwise, an error sound was played and the
trial was repeated (except in the 40x30 shift condition,
where high error rates made repetition impracticable).
Targets appeared in one of 9 different locations on screen,
placed in the centers of the cells of a uniform 3x3 grid.
The use of the start button allowed us to control for dis-
tance between the four interface conditions on the same
screen size. However, we did not control for distance be-
tween screen size conditions for the following reason: for
the 0.3” conditions, we had to use the entire screen as a
start button (30x40px) to keep fatigue manageable. For the
larger screen sizes, we could have kept distances compara-
ble by using the same 30x40px start button and placing the
target under it. The resulting task felt contrived and taught
us little about targeting on the respective screen sizes. We
instead chose to use longer distances as the larger screen

sizes permitted them. While we again used the entire screen
in the 0.6” condition, we used a 7.3mm (48px) start button
for the 1.2” and 2.4” conditions, placed 9mm (60px) and
18mm (120px) from the target respectively along a vector
from the target to the screen center.

Experimental design
The study design was 2 × (2 × 4 × 9) [Commit Method ×
(Interface × Screen Size × Target Position)] with 3 repeti-
tions for each cell. The two types of committal methods for
each interface condition was a between-subjects variable.
Screen sizes were 2.4”, 1.2”, 0.6”, and 0.3”; target positions
were the 9 centroids of a regular 3 x 3 grid. For each trial,
we recorded task completion time and error. Interface order
and screen sizes were counterbalanced. Target positions
were randomized. Half of the participants used back-press
and shift takeoff; the other half used back-button and shift-
button.
Participants received up-front training and at the beginning
of each block. The study took about 45 minutes per partici-
pant.

Apparatus
The experiment was run on two nanoTouch devices, one of
which was augmented with a touch screen for the shift con-
dition. The devices were connected to a PC running Win-
dows Vista, driven by an nVidia graphics card. The study
was implemented in C#.

Participants
16 volunteers, (12 male) between the ages of 22 and 40
were recruited from our institution. Each received a lunch
coupon for our cafeteria as a gratuity for their time. All but
3 had some experience with touchscreens. All were right-
handed.

Hypotheses
We had three hypotheses: (1) we expected the shift condi-
tion to perform worse with decreasing screen size because
of the occlusion problem. (2) For the smaller screen sizes,
we therefore expected shift to have higher error than back,
which we did not expect back to be impacted by screen
size. We expected to see the same trend for task time.
(3) We hypothesized that the error rate for back-button
would be less than that for back-press.

Results
Error rate
Figure 14 shows participant’s error rates.
We performed an analysis of variance. The model was a
CommitMethod[2] x (Interface[2] x ScreenSize[4]) mixed
model ANOVA. For violation of sphericity we used a
Greenhouse-Geyser adjustment for degrees of freedom.
We found that there were significant main effects for both
Interface, (F1,14=15.8, p<0.005) and for ScreenSize,
(F1.5,20.5=20.9, p<0.00005). As expected, there were interac-
tions between Interface × ScreenSize (F1.8,25.8=42.8,
p<0.0001) and between Interface × ScreenSize × Commit
Method (F1.8,25.8=5.1 , p<0.05).

We performed 26 post-hoc paired-sample t-tests with Bon-
ferroni correction (α=0.0019). Error rates were aggregated
across target position.

2.4”1.2”0.6”0.3” 2.4”1.2”0.6”0.3”

error rate

2.4”

1.2”

0.6”
0.3”

30%

20%

10%

0%

40%

30%

20%

10%

0%

40%

shift button
shift take-off

back button
back press

st sb bp bb st sb bp bb st sb bp bb st sb bp bb

Figure 14: Error rates for the Back and Shift conditions
(+/- standard error of the mean). The nested gray rectangles

show the screen sizes to scale.

H1: Post-hoc t-tests for the shift condition, aggregated
across button/takeoff revealed significant difference be-
tween the 0.3” condition and the other three screen sizes
(all p<0.001). The differences between the 0.6” condition
and the two larger conditions were borderline significant
(p<0.015, p<0.006 respectively). This supports our hy-
pothesis, that the performance of the shift condition was
indeed impacted by screen size.
H2: Paired-sample t-tests between interface conditions
within commit methods for the two smaller screens were
either significant or borderline significant. For the 0.3”
screen condition, back-button was less error prone than
shift-button (p<0.00005); the difference between take-off
and press was borderline significant (p<0.003). The com-
parisons for the 0.6” screen were both borderline significant
(p<0.014, p<0.02).
This supported our hypothesis that the back conditions were
less error prone than the corresponding shift conditions for
small screens. As expected, we found no significant differ-
ence in error rate for back for six paired comparisons across
screen sizes (aggregating across button/press). Also as ex-
pected, the advantage of the back conditions for small
screens does not carry over to larger screens. The differ-
ences in error rates between back and shift for the two lar-
ger screens were not significant (p>0.05). For the 2.4”
screen, back-press actually had a higher error rate com-
pared to shift-takeoff (p<0.01).
H3: We performed an independent samples t-test of button
vs. takeoff/press for back and shift, aggregating across
screen size. Back-button was significantly less error prone
than back-press (p<0.00001). There was no significant dif-
ference between shift-button and shift-takeoff.

Task time
Figure 15 shows participant’s task times.
To correct for the skewing common to human response time
data we based our analyses on the median response time
across repetitions for each participant for each target loca-
tion. We then averaged across the target locations.

0s

1s

2s

task time3s

shift button
shift take-off

back button
back press

2.4”1.2”0.6”0.3”
st sb bp bb st sb bp bb st sb bp bb st sb bp bb

2.4”1.2”0.6”0.3” 2.4”1.2”0.6”0.3”
st sb bp bb st sb bp bb st sb bp bb st sb bp bb

Figure 15: Task times for the Back and Shift conditions

(+/- standard error of the mean)

We performed an analysis of variance. There were signifi-
cant main effects for Interface (F1,14=33.9, p<0.00005) and
for Interface × ScreenSize (F1.5, 20.3=11.0, p<0.005).
Since screen size conditions differed in distance, our data
does not allow us to tell in how far screen size impacted
task time. Note though, that task times decrease with de-
creasing screen size for the back conditions (as explained
by the shorter distances), task times roughly increase with
the shift conditions. This is consistent with our observations
with respect to error rates, shift performed poorly for very
small displays.
We performed 8 post-hoc paired-sample t-tests with Bon-
ferroni correction (α= 0.00625) to test H2, that task time for
back would be faster than for shift for the same commit
method and screen size. For the 0.3” screen size, the differ-
ence in speed between the two interface conditions back-
press and shift-takeoff was borderline significant (p<0.019)
as was using button (p<0.031). Using the 0.6” screen size,
the difference was significant (p<0.001). With the two lar-
ger screen sizes, the differences were not significant.

Discussion and revisitation of the fat finger problem
As hypothesized, the back-of-device conditions outper-
formed the shift conditions in the very small screen condi-
tions. This resulted from the fact that the performance of
the shift conditions decreased with decreasing screen size,
while the performance of the back-of-device conditions
remained largely unaffected.
The decreasing performance of shift is expected, because
shift, like any front-side touch technique can evade the fat
finger/occlusion problem only to a certain extent. While the
occlusion problem has traditionally been considered a prob-
lem affecting the visibility of a target, on very small screens
the problem escalates to a more general content occlusion

problem. Since the screen is so small with respect to the
user’s finger, visually communicating anything can become
difficult as soon as the user’s fingers make contact with the
screen. And that includes the visual presentation of target-
ing aids, such as shift’s callout.
Another perspective on the problem involves the notion of
duration. The spatial aspects of the occlusion problem are
straightforward: as illustrated by Figure 16, occlusion gets
worse (a) the smaller the screen (b) the larger the finger
(c) the more fingers, and (d) the further the fingers reach
across the screen. The other main factor, however, has gone
unnoticed so far: duration: the extent of the occlusion prob-
lem is in fact the product of occluded screen surface times
the duration of the occlusion. And while front side targeting
aids can reduce occlusion, they generally do so at the ex-
pense of targeting time [23], which in turn creates addi-
tional occlusion.

b

d

a c
Figure 16: Factors impacting the fat finger problem

The other main finding is that back-of-device interaction
allows for high accuracy across screen sizes. When trig-
gered using the non-dominant hand (the back-button condi-
tion) error rates averaged 2%. This condition did substan-
tially better than the back-press condition with error rates
up to 12%. The latter value should be understood as an up-
per bound though; the pressure-based mechanism is clearly
an early version and the error rate should be expected to
shrink with improved engineering.
In summary, the study supports our hypothesis that back-of-
device interaction continues to work on very small screens.
It suggests that back-of-device interaction is indeed a viable
approach for bringing pointing input to very small screen
devices.

DESIGNING FOR VERY SMALL BACK-OF-DEVICE
So now that we know that back-of-device interaction has
promise, what should an application on, say, a nanoTouch
clip-on look like? Before application designers can start
designing controls and write applications for such a device,
they need to know the constraints inherent to back-of-
device interaction. For touch screens, for example, we
know that users can reliably acquire targets of about 18mm
and this knowledge drives the design of all higher-level
components, from menus to applications. But what are the
respective constraints for back-of-device interaction?
To begin answering this question we conducted a second
user study. We investigated the relationship between target
size and task time and error rate for the two main interac-
tion styles of nanoTouch, which we introduce in the follow-
ing.

Land-on, precision, and escalation
So far, we have talked only about one of nanoTouch’s in-
teraction styles, namely targeting with visual control, as
made possible by pseudo-transparency [24]. Since it allows
for precise manipulation we will refer to this also as preci-
sion interaction (Figure 17).

touch drag commit
Figure 17: Precision acquisition of a small target

The other interaction style supported by nanoTouch is tar-
geting without visual control (Figure 18), as introduced by
earlier back-of-device designs, such as under-table-
interaction [25]. We will call these land-on interactions.
While land-on selection at the bottom side of an interactive
table led to large error (requiring 4.5cm targets [25]) we
would expect more reasonable values on nanoTouch: the
prototype is small enough to allow users to see a good
amount of their finger. One might hypothesize that this al-
lows users to estimate the touch position by extrapolating
their finger.

touch lift-off
Figure 18 Land-on acquisition of a large target

In order to offer both interaction styles at once, we can
combine precision and land-on targeting into a single inter-
action model (Figure 19). In such a combined model, all
interactions initially proceed as a land-on interaction. How-
ever, the user can request help, e.g., by holding contact with
the touch surface beyond a certain time threshold (dwell-
ing). NanoTouch then responds by revealing the pointer,
allowing users to complete the task as a precision interac-
tion. Since this process resembles shift’s, we call it escala-
tion. Compared to shift’s callout, however, nanoTouch’s
pointer is fairly unobtrusive. This makes it reasonable to
escalate early and in most cases we will do so instantly. In
this case, there is no more distinction on the device level,
but merely a distinction between two interaction styles.

land-on

es
ca

la
te

precision
Figure 19: Escalation: land-on to precision

USER STUDY 2: TARGETING ON THE BACK
Participants in this study performed two tasks. The purpose
of the precision task was to determine the relationship be-
tween target size and task time/error rates. The purpose of
the land-on task was to determine land-on accuracy. Based
on these findings, we make design recommendations.

Interfaces
There were three interface conditions, all of which were
implemented using a nanoTouch device. Unlike the previ-
ous study, we kept screen size constant at 2.4”.
The precision-press and precision-button interfaces corre-
spond to the back-press and back-button conditions in our
first user study.
In the land-on condition, participants acquired targets by
tapping the device backside without receiving any type of
visual feedback from the device.

Tasks
There were two tasks.
The precision task was identical to the first user study: Par-
ticipants clicked an 11mm (72px) start button to reveal the
target and start the timer, and then acquired the square tar-
get. Target sizes varied from 1.4mm, 2.8mm, 5.5mm, to
11mm (9, 18, 36, and 72px, respectively). We added an
additional smallest target size of 0.6mm (4px) to the button
condition; piloting had indicated that this target size was
too error prone in the press condition. Use of the start but-
ton controlled for distance 18.4mm (120px); the start button
was placed as in Study 1.
Half of the participants completed this task with the press
interface, the other half with the button interface. In other
words, press vs. button was a between-subjects variable.
Participants performed the land-on task using the land-on
interface. Unlike the precision task, we did not vary target
size. Instead, the screen always showed a point-sized target,
indicated by a crosshair. The participants’ task was to tap
the device backside as close to the target as possible. We
recorded the relative location of the tap with respect to the
target.

Experimental design
The design of the precision task was 2 x (4 x 12) [Commit
method × (Target Size × Target Position)] with 5 repeti-
tions for each cell. As mentioned above, the back-button
condition was also tested against a 4px target, for a total of
5 targets. Target positions were the 12 centroids of a regu-
lar 4 x 3 grid. Method of committing was a between-
subjects variable: half of the participants used back-press
and the other half used back-button. For each trial, we re-
corded task completion time and error. Task order was
counterbalanced. Target sizes and positions were random-
ized. Participants received up-front training.
The design of the land-on task was within-subjects. There
were 12 target positions and 24 repetitions per position.
Target positions were the 12 centroids of a regular 4 x 3
grid. Participants received up-front training.

Apparatus
Same as in User Study 1.

Participants
14 volunteers, 11 male, between the ages of 23 and 47 were
recruited from our institution. Each received a lunch cou-
pon for our cafeteria as a gratuity for their time. All but 2

had experience with touchscreens. None of them had par-
ticipated in Study 1. All were right-handed.

Hypotheses
The main purpose of the study was to determine error rates
and task times for individual target sizes, positions, and
interfaces in order to inform the design of back-of-device
user interfaces. As a result, we had no specific hypotheses,
beyond the obvious expectation that precision button would
be less error prone than precision press.

Results
The findings of this study are captured in the following four
charts.
Precision interaction
Figure 20 shows the error rates for precision-press and pre-
cision-button. Figure 21 shows the respective task times.

1.4mm 2.8mm 5.5mm 11mm

30%

20%

10%

0%
4px 9px 18px 36px 72px

er
ro

r r
at

e

0.6mm

1.41.4

5.5
11mm

2.8

precision button
precision press

Figure 20: Error rates for the two precision conditions

(+/- standard error of the mean). Pink squares show
the size of the respective targets (to scale).

3s

2s

1s

0s 1.4mm 2.8mm 5.5mm 11mm
4px 9px 18px 36px 72px

0.6mm

ta
sk

 ti
m

e

precision button
precision press

Figure 21: Task times for the two precision conditions

(+/- standard error of the mean)

Land-on interaction
Figure 22 shows the distribution of touch locations for all
participants for the land-on task.
Figure 23 aggregates the targeting data from Figure 22. The
blue line on top shows what percentage of taps was located
outside of a square box of a given size centered around the
target. This value can be used as provides an estimate for
the error rate that a square button of the respective size
would offer (obviously a rough estimate only, as the pres-
ence of a buttons can affect performance [31]).

The blue line ends at 80px, where the point cloud of edge
targets gets clipped at the edge of the device. The magenta,
middle line is based only on the two center targets, prevents
it from getting cropped. The red line at the bottom is based
on the same data, but assumes perfect calibration of the
device, such that the centroids of the tapping data (for each
user) coincide with the target.

Figure 22: Land-on: spread of touch positions (requires color).

Red rings indicate target locations (to scale).

100%

80%

60%

40%

20%

0% 12.2mm6.1mm 18.3mm
80px40px 120px

all targets

2 center targets

post-calibrated

Figure 23: Land-on: Percentage of taps that lied outside of a

square box of a given size.

Target acquisitions with land-on, required on average
884ms.

Discussion & application
The data shown in Figure 20 to Figure 23 allows us to esti-
mate task times and error rates for acquiring different types
of user interface elements.
Example: When designing a soft keyboard on the backside
of a 2’4” device we could choose a 12-key design. Figure
23 predicts that, with user-specific calibration, error rates
with be around 2% per keypress for the 80x80px buttons.
An alternative full keyboard design might break the device
backside into 8 x 6 buttons measuring 40x40px each. A
land-on error rate of close to 40% suggests that we should
use precision mode instead. If used with a separate button,
we reach an error rate of about 2% per key press.
We can use the same process to compute estimates for task
times and to computer estimates for different screen sizes,
such as the 1” diagonal pendant from Figure 1.

CONCLUSIONS & FUTURE WORK
In this paper, we have argued that the key to touch-enabling
very small devices is to touch-enable the device backside.
While we have demonstrated the effect only for a specific
technique—shift—it seems reasonable to claim that any
pointing technique using the device front will run into the
fat finger/occlusion problem once the screen gets smaller
than the technique-specific threshold. The presented back-
of-device design, in contrast, works practically independent
of device size.
This opens up a very large space of new device designs,
including the ones shown in Figure 1 and Figure 3. They
allow us to take a fresh new perspective on a space where
touchscreen-based designs have not been able to succeed to
date, such as watch-like form factors.
In this paper, we made four contributions: (1) nanoTouch, a
back-of device small-screen device prototype, (2) a user
study showing that back-of-device interaction works inde-
pendent of device size, while front-touch combined with
shift fails for screen sizes below one inch, (3) a second
study providing data that application designers can use to
make UI design decisions, and (4) four back-of-device con-
cepts ranging from in size from ring to clip-on (Figure 1
and Figure 3).
As future work, we are planning on directing our attention
to interactive back-of-device applications, taking a closer
look at steering and tracking. We also plan on exploring the
visual design aspects of back-of-device applications. And
finally, we plan on creating additional prototypes that ex-
plore new application scenarios.

Acknowledgements
REFERENCES
1. Albinsson, P. Zhai, S. High precision touch screen interaction.

In Proc. CHI’03, 105-112.
2. Azuma, R.T. (1997). A Survey of Augmented Reality. Pres-

ence: Teleoperators and Virtual Environments 6(4) (August
1997). pp. 355-385.

3. Baudisch, P., Zotov, A., Cutrell, E., and Hinckley, K.
Starburst: a Target Expansion Algorithm for Non-Uniform
Target Distributions. In Proc. AVI’08, pp. 129-137.

4. Buxton, W. A Three-State Model of Graphical Input. In Proc.
INTERACT '90. pp. 449-456.

5. Buxton, W., Hill, R. & Rowley, P. Issues and techniques in
touch-sensitive tablet input. Proc. SIGGRAPH'85, pp. 215-223.

6. Grossman, T, Balakrishnan, R. (2005). The bubble cursor:
enhancing target acquisition by dynamic resizing of the cur-
sor's activation area. In Proc. CHI’05, 281-290.

7. Hiraoka, S., Miyamoto, I., Tomimatsu, K. Behind Touch, a
Text Input Method for Mobile Phones by The Back and Tac-
tile Sense Interface. Information Processing Society of Japan,
Interaction 2003. p. 131-138.

8. Iwabuchi., M., Kakehi. Y., and Kakehi, T. LimpiDual Touch:
Interactive Limpid Display with Dual-sided Touch Sensing. In
SIGGRAPH’08 posters.

9. Kabbash, P., Buxton, W. The “Prince” technique: Fitts' law
and selection using area cursor. In Proc. of CHI'95, 273-279.

10. Labrune, J,B, and Mackay, W. Telebeads: Social Network
Mnemonics for Teenagers. In Proc IDC '06, pp. 57–64.

11. Li, K., Baudisch, P., and Hinckley, K. BlindSight: eyes-free
access to mobile phones. In Proc. CHI‘08, pp. 1389-1398.

12. McGuffin, M., and Balakrishnan, R. Acquisition of Expand-
ing Targets. In Proc. CHI’02, pp. 57-64.

13. Merrill, D., Kalanithi, J., and Maes, P. Siftables: Towards
Sensor Network User Interfaces. In Proc. TEI'07, pp. 75–78.

14. Olwal, A., Feiner S. (2003) Rubbing the Fisheye: precise
touch-screen interaction with gestures and fisheye views. In
Conf. Companion. UIST'03, pp. 83-84.

15. Potter, R., Weldon, L., Shneiderman, B. (1988). Improving
the accuracy of touch screens: an experimental evaluation of
three strategies. Proc. CHI’ 88, pp. 27-32.

16. Ramos G., Boulos, M., and Balakrishnan, R. Pressure Wid-
gets. In Proc. CHI’04, pp. 487–494.

17. Ren, X., Moriya, S. (2000). Improving selection performance
on pen-based systems: a study of pen-based interaction for se-
lection tasks. ACM TOCHI. 7(3):384-416.

18. Roudaut, A., Huot, S., and Lecolinet. E. TapTap and Mag-
Stick: Improving One-Handed Target Acquisition on Small
Touch-screens. In Proc. AVI’08, pp. 146-153

19. Sears, A., Shneiderman, B. (1991). High precision touch-
screens: design strategies and comparisons with a mouse. Int.
J. Man-Mach. Stud. 34(4):593-613.

20. Siek, K.A., Rogers, Y., and Connelly, K.H. Fat Finger Wor-
ries: How Older and Younger Users Physically Interact with
PDAs. In Proc. INTERACT’05, pp. 267–280.

21. Sugimoto, M. Hiroki, K. (2006). HybridTouch: an intuitive
manipulation technique for PDAs using their front and rear
surfaces. In Proc. MobileHCI '06, p. 137-140.

22. Tang, J. C. and Minneman, S. L. VideoDraw: a video inter-
face for collaborative drawing. In Proc. CHI ‘90. p. 313-320.

23. Vogel, D. & Baudisch, P. Shift: A Technique for Operating
Pen-Based Interfaces Using Touch. In Proc. CHI’07, pp. 657-
666.

24. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., Shen, C.
LucidTouch: A See-Through Mobile Device. In Proc. UIST
2007, pp. 269–278.

25. Wigdor, D., Leigh, D., Forlines, C., Shipman, S., Barnwell, J.,
Balakrishnan, R., Shen, C. Under the Table Interaction. In
Proc. UIST’06, 259-268.

26. Wobbrock, J.O., Myers, B.A. and Aung, H.H. (2008) The
performance of hand postures in front- and back-of-device in-
teraction for mobile computing. International Journal of Hu-
man-Computer Studies. To appear.

27. Yatani, K., Partridge, K., Bern, M., and Newman, M. Escape:
A Target Selection Technique Using Visually-cued Gestures.
In Proc. CHI 2008, pp. 285–294.

28. Zeleznik, R., Miller, T., and Forsberg, A. Pop through Mouse
Button Interactions. In Proc. UIST’01, pp195–196.

29. Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin, R., Agra-
wala, M., Cutrell, E. The Springboard: Multiple Modes in One
Spring-Loaded Control. In Proc. CHI’06, pp. 181-190.

30. Li, Y., Hinckley, K., Guan, Z., Landay, J. A. Experimental
Analysis of Mode Switching Techniques in Pen-based
User Interfaces. In Proc. CHI’05, pp. 461-470.

31. Zelaznik, H.N., Mone, S., McCabe, G.P. and Thaman, C.
(1988) Role of temporal and spatial precision in determining
the nature of the speed-accuracy trade-off in aimed-hand
movements. Journal of Experimental Psychology: Human
Perception and Performance 14 (2), 221-230.

