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ABSTRACT 
In this paper, we explore how to add pointing input capa-
bilities to very small screen devices. On first sight, touch-
screens seem to allow for particular compactness, because 
they integrate input and screen into the same physical 
space. The opposite is true, however, because the user’s 
fingers occlude contents and prevent precision. 
We argue that the key to touch-enabling very small devices 
is to use touch on the device backside. In order to study 
this, we have created a 2.4” prototype device; we simulate 
screens smaller than that by masking the screen. We present 
a user study in which participants completed a pointing task 
successfully across display sizes when using a back-of de-
vice interface. The touchscreen-based control condition 
(enhanced with the shift technique), in contrast, failed for 
screen diagonals below 1 inch. We present four form factor 
concepts based on back-of-device interaction and provide 
design guidelines for extracted from a second user study. 

ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces. Input devices and strategies; 
B 4.2 Input Output devices 
Keywords: back-of-device interaction, nanoTouch, lucid-
Touch, mobile, touch, pointing. blutwurst 
INTRODUCTION 
In this paper, we explore the question of how to provide 
very small screen devices with pointing input capabilities. 
Pointing input is crucial for many mobile applications from 
the efficient selection of links in a web page to the ability to 
play interactive real-time games. With very small we con-
sider the following range. At the larger end, we look at de-
vices with screens diagonals around 2.5” (6.3cm): devices 
designed for use during physical activities as well as tangi-
ble screen devices (e.g., siftables, 2” screens [13]). At the 
smaller end, we look at the truly tiny screens used in acces-
sories, such as smart watches (e.g., Palm Watch) or elec-
tronic jewelry (e.g., [10]). The latter can be as small as a 
fraction of an inch. While diminishing screen size has many 
impacts on overall usability, e.g. readability, in this paper 
we focus exclusively on the interaction. 

 
Figure 1: Back-of-device touch input can enable pointing input 
on very small screens. This enables building new types of de-

vices, such as touch-capable electronic jewelry. 

Recently, we have seen a departure from devices using key-
pads and d-pads (Figure 2a) towards devices using touch-
screens. Touch screens allow for efficient pointing input, 
and by eliminating the need for a keypad they allow for a 
comparably compact enclosure. 
Intuitively, one might think that this would be a step for-
ward towards achieving higher miniaturization (Figure 2b). 
Unfortunately, the opposite is true. The selection point on 
touch screens is ambiguous, because of the size and soft-
ness of the user’s fingertip. Since the finger occludes the 
target area, users are required to target without visual feed-
back. This fat finger problem [20] makes the selection of 
small targets difficult and error-prone. Device designers 
address the problem most commonly by enlarging targets to 
approximately finger size. Unfortunately, this typically re-
sults in devices even larger then the more traditional d-pad 
devices (Figure 2c, e.g., iPhone). 
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Figure 2: Pointing input on mobile devices using (a) separate 

d-pad, (b) touch screen of corresponding size (fat-finger prob-
lem!), (c) larger touch screen of usable size, and (d) back-of-

device touch input. 

Back-of-device interaction [7, 21, 26, 25] avoids interfer-
ence between fingers and screen by keeping the user’s hand 
on the back of the device, a space historically unused 
(Figure 2d). A pointer on screen informs users about the 
position of the finger on the back (pseudo transparency 
[24]). Apart from that, screen contents remain visible and 
occlusion-free. 
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Figure 3: Three of the back-of-device designs we envision 

(a) clip-on with 2.4” screen (b) watch with 1.2” screen, and 
(b) ring  with a screen diagonal of less than half an inch. These 

concepts reflect the screen sizes we used in our user study. 

In this paper, we explore whether back-of-device interac-
tion can enable pointing on very small touch devices. Figure 
1 and Figure 3 show four devices that we are envisioning 
and that use back-of-device input across different degrees 
of smallness. These concepts inform the screen sizes we 
used in our user study. 
In order to explore this design space, we have created a 
prototype device we call nanoTouch (Figure 4). It features 
a 2.4” screen, like the clip-on design shown in Figure 3a. 
We simulate screen sizes below 2.4” by masking the device. 
Using this device, we ran a user study comparing back-of-
device touch input with front-side touch input augmented 
with the shift technique [23]). We found that back-of device 
input continues to work for screen diagonals below 1 inch, 
while front-side input does not. We report the results of a 
second user study in which we quantify task times and error 
rates of back-of-device interaction. Based on these findings, 
we define design guidelines. 

 
Figure 4: The nanoTouch device offers a 2.4” screen. A dot-

shaped pointer corresponds to the touch location on the back. 
(In the shown mode, the device facilitates discoverability by 

simulating transparency, see section “pseudo transparency”). 

RELATED WORK 
This paper is related to targeting, touch input on small-
screen devices, and back-of-device interaction. 

Increasing targeting accuracy 
In order to help users acquire small targets, researchers 
have proposed a variety of ways of enlarging targets, such 
as by zooming manually (e.g., double tapping [1, 18] or 
rubbing [14]) or automatically (expanding targets [12]). 
Other techniques enlarge targets in motor space only, e.g., 
by snapping the pointer to a target. Starburst [3] extends 
the concept to non-uniform target distributions. Escape 
combines snap-to-target with marking [27]. A similar effect 
can be accomplished by enlarging the pointer instead 
(prince technique [9], bubble cursor [6]) or by slowing the 
pointer down when high accuracy is required (high preci-
sion touch screen [19]). 

Target ambiguity and occlusion on touch screens 
Several solutions have been proposed to overcome the fat 
finger problem. Styli offer a precise tip and remove the 
user’s hand from the target surface. A downside of styli is 
that introduce an additional physical object that users need 
to retrieve before use [23]. 
Software techniques designed to address the fat finger prob-
lem shift finger and target away from each other. Offset 
cursor [15] creates a software pointer a fixed distance 
above the finger’s contact point and has therefore been re-
ferred to as a software version of a stylus [23]. Offset Cur-
sor uses take-off selection [15,17] in which the target is 
selected at the point where the finger is lifted rather than 
where it first contacted the screen. On the flipside, the input 
area needs to be extended beyond the screen in order to 
prevent part of the screen from becoming inaccessible. On a 
screen measuring half an inch high, adding half an inch of 
space effectively doubles the device size (Figure 5a). De-
vices offering a touch pad on the device front are impacted 
in a similar way. 
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Figure 5: (a) Offset cursor and (b) shift on a device with a very 

small screen. 

Shift [23] alleviates this limitation. Users can operate shift 
like a regular touch screen. If users require high precision, 
however, they can trigger a special precision mode by dwel-
ling. Shift then “escalates” and displays a “callout” mirror-
ing the area currently hidden under the user’s finger as 
shown in Figure 5b. Since the callout is placed dynamically 
in dependence of the touch location, it can always be con-
tained within the screen area and without additional device 
space. Because of these benefits, we chose shift as the con-
trol condition in User Study 1. 



 

 

Back-of-device interaction 
Several researchers have proposed moving the interaction 
to the back of the device as means to eliminate occlusion. 
BehindTouch [7] and BlindSight [11] place a 12-key pad on 
the backside of a mobile phone. HybridTouch [21] allows 
users to scroll by performing drag gestures on a touch pad 
mounted on the backside of a PDA. Wobbrock enabled 
EdgeWrite on the backside of a similar device [26]. 
Wigdor et al. touch-enabled the bottom of their tabletop 
display [25]. Unlike HybridTouch, the touch surface in un-
der the table interaction is operated in absolute mode, 
mapping every location on the back 1:1 to the directly op-
posing spot on the front. 
This first generation of back-of-device interaction elimi-
nated the occlusion of contents by the user’s fingers. In 
exchange, however, they caused the user’s fingers to be 
occluded by the device. While eyes-free use works fine for 
gestures [26], it turned out to cause large error rates when 
targeting ([25] requires 4.5cm targets). 
LucidTouch [24] addresses the problem by introducing 
pseudo-transparency, a concept borrowed from augmented 
reality [2]. The device creates the illusion of a transparent 
device by overlaying a video image of the user’s fingers 
(Figure 6), creating a visual effect similar to VideoDraw 
[22]. Users interact based on pointers images tracking with 
the user’s fingertips. This allows for precise manipulation 
independent of finger size. A more recent system, Limpi-
Dual Touch [8] creates a similar effect using physical see-
through. 

 
Figure 6: The LucidTouch prototype contains a 7” screen. The 

user’s hands are tracked by a camera on a 12” boom. 

THE NANOTOUCH DEVICE 
Our initial plan was to use a lucidTouch device for our 
studies. Pilot studies, however, indicated that its size and in 
particular screen and bezel thickness were impacting target-
ing. This meant that study results obtained with this proto-
type would not necessarily transfer 1:1 to the space of very 
small devices. We therefore redesigned the device, resulting 
in the nanoTouch prototype shown in Figure 4 & Figure 7. 
In order to achieve the desired size, we made several sim-
plifications compared to lucidTouch. We decided that mul-
ti-touch would be less crucial for a device barely large 
enough to fit two fingers at the same time. Dropping multi-
touch allowed us to trade in the camera, the boom, and the 

multi-touch pad for a capacitive single-touch pad. The re-
sulting device supports the same three aspects that distin-
guished the original LucidTouch from its predecessors, i.e., 
1:1 absolute mapping between input and screen, three states 
(out-of-range, tracking, and dragging), and a simplified 
version of pseudo-transparency. 
Although we have explored some one-handed form factors, 
we designed the prototype primarily for bimanual use, as 
shown in Figure 1 and Figure 4. In this section we give a 
brief overview of the device, which we used to run both 
user studies reported in this paper. 

  
Figure 7: The nanoTouch prototype. The capacitive trackpad 

on the device backside is mapped 1:1 to the screen, a 
320x240px, 2.4” OLED screen. 

Tracking state = touch 
Lacking a camera, the new device cannot sense whether a 
hand is hovering over the device backside. In order to still 
offer the required three states (out-of-range, tracking, and 
dragging [4]) we added pressure sensitivity to the pad and 
remapped the 3 states as shown in Figure 8: Touching the 
device results in tracking; users enter the dragging state by 
pressing. 

 lucidTouch nanoTouch 
out-of-range no hands hovering/no hands 
tracking hovering touching 
dragging touching pressing 

Figure 8: The three states of old and new prototype 

This pressure sensing mechanism consists of a ring of elas-
tic silicone located under the edge of the touch pad. It com-
presses under pressure and eventually establishes contact 
with a conductive path. When pressed, a solenoid inside the 
pad provides a brief auditory and tactile feedback confirma-
tion, similar to the sensation produced by a micro switch. 
Earlier designs based on one or more micro switches had 
led to uneven clicking behavior. 
In the default absolute mode, the touch pad maps 1:1 to the 
screen, operating like a (reversed) touch screen. Applica-
tions expecting relative (mouse) input, such as the shooter 
game shown in Figure 9 run the device in relative mode. 
This causes the device to function like a mirrored version of 
a track pad, as found in a standard notebook computer. The 
pressure mechanism is calibrated to require a comparably 



 

 

small amount of pressure. This allows for fatigue-free drag-
ging, as required for steering activities, such as image re-
touching or when playing interactive video games. 

 
Figure 9: First person shooter running on nanoTouch through 

the prototyping environment (Unreal Tournament 2004) 

Quasi modes using thumb buttons 
To allow users to trigger discrete functionality, we mounted 
two buttons at the bottom left corner of the device (bottom 
right corner for left-handed users) as shown in Figure 10. 
This placement allows the button to be operated using a 
rocking motion of the thumb of the non-dominant hand—
while holding the device. Users can also hold down the 
buttons, which allows them to work as qualifier keys and 
thus to implement quasi modes [29]. We found this to work 
reliably and over extended periods of time. We have also 
used thumb buttons as a more ergonomic (even though less 
discoverable) alternative to pressing the touchpad and as 
left and right buttons when emulating a mouse. Another 
pair of buttons in the opposite corner of the device is avail-
able for auxiliary use. 

left
right

 
Figure 10: Thumb buttons are operated by the hand holding 

the device 

Pseudo-transparency 
One of the most useful details of lucidTouch was its natu-
ralistic implementation of pseudo-transparency. Picking up 
the device with one or two hands caused an outline of these 
hands to show up on the screen, suggesting the screen was 
indeed transparent. This dramatically contributed to discov-
erability—first-time users instantly “grasped” the concept. 
To offer a similar type of experience despite the absence of 
the camera, the new device hallucinates an overlay based on 

the (x,y) coordinates of the finger received from the touch 
pad and a pre-rendered image of a finger. Figure 4 shows 
the default setting. Different users can fit the overlay to 
their needs by tweaking posture, finger size, and skin color. 
Several details reinforce the sensation of transparency: The 
user's finger is rendered in front of the background, but 
behind the translucent buttons, suggesting a stacking order. 
Pressing is visualized by overlaying the user’s fingertip 
with a white tip, suggesting that blood is being pressed out 
of the finger tip (Figure 11). The bitmap image of the finger 
was taken while the finger was pressed against a glass pane. 
A fake white reflection in the top left corner of the screen 
hints the existence of a glass surface in the device. 

a b  
Figure 11: (a) The user’s fingertip (b) turns white when pressed 

In our experience, naturalistic pseudo-transparency simpli-
fies discoverability and enables walk-up use where it would 
otherwise be impossible. Once users understand the con-
cept, however, many applications will use a less naturalistic 
notion of pseudo-transparency—in the simplest case noth-
ing but a dot-shaped pointer. 

Development environment  
Our nanoTouch prototype is tethered to a PC. This facili-
tates prototyping and reduces the amount of hardware in the 
device, allowing for a smaller form factor. The PC recog-
nizes the device as an external screen connected via DVI. 
Arbitrary Windows application can be run on the device by 
scaling the application window and placing it in the screen 
area mirrored on the device. The touch pad is connected to 
the PC via USB. It sends mouse move events and commu-
nicates touch and button presses as key press events. 

Resulting size 
The use of an OLED display (2.4”, 320x240px, 166dpi) 
eliminates the need for a backlight and further reduces de-
vice thickness. The resulting device measures 67x47x10mm. 

USER STUDY 1: BACK VS. SHIFT ON SMALL SCREENS 
In order to verify our assumption that back-of-device inter-
action is the key to pointing input on very small devices, we 
conducted a controlled experiment. There were two inter-
face conditions: back-of-device touch interaction and front-
side touch interaction enhanced with the shift technique. 
The task was to select a 1.8mm square target displayed on 
the built-in screen. Screen sizes varied between diagonals 
of 2.4” (64mm) and 0.3” (8mm). Our main hypothesis was 
that the back-of-device interface would work across all 
screen sizes, while the front-side condition would fail for 



 

 

screen sizes below a certain threshold. We were also inter-
ested in finding that threshold. 

Screen sizes 
There were four screen size conditions: 2.4”, 1.2”, 0.6”, 
and 0.3” (320x240px, 160x120, 80x60, and 40x30 respec-
tively). The 2.4” condition was implemented using the full 
screen of a nanoTouch device. The smaller screen condi-
tions were implemented by masking the screen in software, 
as shown in Figure 12 (physical masking had impacted 
tracking in the shift condition during pilots). 

 
Figure 12: We simulated smaller screens, such as this 1.2” 

condition by masking the screen in software. 

Interfaces 
There were four interface conditions, all of which were 
implemented on a nanoTouch device. 
In the two back conditions, participants provided pointing 
input via the device backside. The device was run in abso-
lute mode. To eliminate variation due to differences in tar-
geting strategy, participants were encouraged to keep their 
index finger in contact with the device at all times. 
The back condition was broken down into two sub-
conditions for the method of committing. In the back-press 
condition, participants committed selections by pressing the 
touchpad. The target location was determined on release. In 
order to minimize tracking errors, we applied a filter re-
moving the last 80ms of move events before the “up” event, 
as suggested by [5]. In the back-button condition, partici-
pants committed selections bi-manually by pressing and 
releasing the corner thumb button using the non-dominant 
hand holding the device. This version was inspired by a 
study of Li et al, which suggests that mode switching with 
the non-dominant hand offers performance benefits [30]. 
In the two shift conditions, participants acquired targets 
using the shift technique described earlier. These conditions 
were implemented by overlaying a clear touch screen onto a 
nanoTouch device (a 3M MicroTouch 6.7” as shown in 
Figure 13). The device was rested against the edge of a 
table to prevent the weight of the touch overlay from caus-
ing fatigue. 
We ran the original shift code published in [23], adjusted to 
render at original scale on the high-dpi lucidTouch screen. 
The 2.4” and 1.2” screen size conditions used the original 
settings: a 16mm callout presented at an 11mm offset. For 
the two smaller screen size conditions, we reduced callout 

diameter and offset to fit the callout into the screen. This 
resulted in a 11mm callout at 8mm offset in the 0.6” condi-
tion and a 4mm callout at 4mm offset in the 0.3” condition. 
We also optimized the layout algorithm for the tiny screens, 
always placing the callout in the quadrant opposite of the 
initial touch location. Participants operated the shift condi-
tion using their finger tip. For the 1.8mm target size used in 
the study shift escalated instantly. 

 
Figure 13: The shift conditions were run on a nanoTouch de-
vice with an overlaid touch sensor, here in the 2.4” condition. 

There were two shift sub-conditions: when using shift-
takeoff, users committed by lifting their finger off the 
screen, as described in the original paper. Improving on the 
published algorithm, we added the same filter used by the 
back condition: upon takeoff, all mouse movements occur-
ring during the last 80ms were removed. In the shift-button 
condition participants committed using the thumb button. 

Task 
Participants performed a target acquisition task similar to 
that the one described in the original shift paper [23]. Par-
ticipants started each trial by tapping a start button. This 
removed the start button, displayed the target (red square, 
12px/1.8mm), and started the timer. Now participants 
placed the pointer over the target and committed using 
press, take-off, or button press, depending on interface con-
dition. This stopped the timer. Targets turned light red on 
hover (with back) and light blue on press (both back and 
shift). If a target was selected correctly, a clicking sound 
was played; otherwise, an error sound was played and the 
trial was repeated (except in the 40x30 shift condition, 
where high error rates made repetition impracticable).  
Targets appeared in one of 9 different locations on screen, 
placed in the centers of the cells of a uniform 3x3 grid. 
The use of the start button allowed us to control for dis-
tance between the four interface conditions on the same 
screen size. However, we did not control for distance be-
tween screen size conditions for the following reason: for 
the 0.3” conditions, we had to use the entire screen as a 
start button (30x40px) to keep fatigue manageable. For the 
larger screen sizes, we could have kept distances compara-
ble by using the same 30x40px start button and placing the 
target under it. The resulting task felt contrived and taught 
us little about targeting on the respective screen sizes. We 
instead chose to use longer distances as the larger screen 



 

 

sizes permitted them. While we again used the entire screen 
in the 0.6” condition, we used a 7.3mm (48px) start button 
for the 1.2” and 2.4” conditions, placed 9mm (60px) and 
18mm (120px) from the target respectively along a vector 
from the target to the screen center. 

Experimental design 
The study design was 2 × (2 × 4 × 9) [Commit Method × 
(Interface × Screen Size × Target Position)] with 3 repeti-
tions for each cell. The two types of committal methods for 
each interface condition was a between-subjects variable. 
Screen sizes were 2.4”, 1.2”, 0.6”, and 0.3”; target positions 
were the 9 centroids of a regular 3 x 3 grid. For each trial, 
we recorded task completion time and error. Interface order 
and screen sizes were counterbalanced. Target positions 
were randomized. Half of the participants used back-press 
and shift takeoff; the other half used back-button and shift-
button. 
Participants received up-front training and at the beginning 
of each block. The study took about 45 minutes per partici-
pant. 

Apparatus 
The experiment was run on two nanoTouch devices, one of 
which was augmented with a touch screen for the shift con-
dition. The devices were connected to a PC running Win-
dows Vista, driven by an nVidia graphics card. The study 
was implemented in C#. 

Participants 
16 volunteers, (12 male) between the ages of 22 and 40 
were recruited from our institution. Each received a lunch 
coupon for our cafeteria as a gratuity for their time. All but 
3 had some experience with touchscreens. All were right-
handed. 

Hypotheses 
We had three hypotheses: (1) we expected the shift condi-
tion to perform worse with decreasing screen size because 
of the occlusion problem. (2) For the smaller screen sizes, 
we therefore expected shift to have higher error than back, 
which we did not expect back to be impacted by screen 
size. We expected to see the same trend for task time. 
(3) We hypothesized that the error rate for back-button 
would be less than that for back-press. 

Results 
Error rate 
Figure 14 shows participant’s error rates. 
We performed an analysis of variance. The model was a 
CommitMethod[2] x (Interface[2] x ScreenSize[4]) mixed 
model ANOVA. For violation of sphericity we used a 
Greenhouse-Geyser adjustment for degrees of freedom. 
We found that there were significant main effects for both 
Interface, (F1,14=15.8, p<0.005) and for ScreenSize, 
(F1.5,20.5=20.9, p<0.00005). As expected, there were interac-
tions between Interface × ScreenSize (F1.8,25.8=42.8, 
p<0.0001) and between Interface × ScreenSize × Commit 
Method (F1.8,25.8=5.1 , p<0.05). 

We performed 26 post-hoc paired-sample t-tests with Bon-
ferroni correction (α=0.0019). Error rates were aggregated 
across target position. 
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Figure 14: Error rates for the Back and Shift conditions 
(+/- standard error of the mean). The nested gray rectangles 

show the screen sizes to scale. 

H1: Post-hoc t-tests for the shift condition, aggregated 
across button/takeoff revealed significant difference be-
tween the 0.3” condition and the other three screen sizes 
(all p<0.001). The differences between the 0.6” condition 
and the two larger conditions were borderline significant 
(p<0.015, p<0.006 respectively). This supports our hy-
pothesis, that the performance of the shift condition was 
indeed impacted by screen size. 
H2: Paired-sample t-tests between interface conditions 
within commit methods for the two smaller screens were 
either significant or borderline significant. For the 0.3” 
screen condition, back-button was less error prone than 
shift-button (p<0.00005); the difference between take-off 
and press was borderline significant (p<0.003). The com-
parisons for the 0.6” screen were both borderline significant 
(p<0.014, p<0.02). 
This supported our hypothesis that the back conditions were 
less error prone than the corresponding shift conditions for 
small screens. As expected, we found no significant differ-
ence in error rate for back for six paired comparisons across 
screen sizes (aggregating across button/press). Also as ex-
pected, the advantage of the back conditions for small 
screens does not carry over to larger screens. The differ-
ences in error rates between back and shift for the two lar-
ger screens were not significant (p>0.05). For the 2.4” 
screen, back-press actually had a higher error rate com-
pared to shift-takeoff (p<0.01). 
H3: We performed an independent samples t-test of button 
vs. takeoff/press for back and shift, aggregating across 
screen size. Back-button was significantly less error prone 
than back-press (p<0.00001). There was no significant dif-
ference between shift-button and shift-takeoff. 



 

 

Task time 
Figure 15 shows participant’s task times. 
To correct for the skewing common to human response time 
data we based our analyses on the median response time 
across repetitions for each participant for each target loca-
tion. We then averaged across the target locations. 
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Figure 15: Task times for the Back and Shift conditions 

(+/- standard error of the mean) 

We performed an analysis of variance. There were signifi-
cant main effects for Interface (F1,14=33.9, p<0.00005) and 
for Interface × ScreenSize (F1.5, 20.3=11.0, p<0.005). 
Since screen size conditions differed in distance, our data 
does not allow us to tell in how far screen size impacted 
task time. Note though, that task times decrease with de-
creasing screen size for the back conditions (as explained 
by the shorter distances), task times roughly increase with 
the shift conditions. This is consistent with our observations 
with respect to error rates, shift performed poorly for very 
small displays. 
We performed 8 post-hoc paired-sample t-tests with Bon-
ferroni correction (α= 0.00625) to test H2, that task time for 
back would be faster than for shift for the same commit 
method and screen size. For the 0.3” screen size, the differ-
ence in speed between the two interface conditions back-
press and shift-takeoff was borderline significant (p<0.019) 
as was using button (p<0.031). Using the 0.6” screen size, 
the difference was significant (p<0.001). With the two lar-
ger screen sizes, the differences were not significant. 

Discussion and revisitation of the fat finger problem 
As hypothesized, the back-of-device conditions outper-
formed the shift conditions in the very small screen condi-
tions. This resulted from the fact that the performance of 
the shift conditions decreased with decreasing screen size, 
while the performance of the back-of-device conditions 
remained largely unaffected. 
The decreasing performance of shift is expected, because 
shift, like any front-side touch technique can evade the fat 
finger/occlusion problem only to a certain extent. While the 
occlusion problem has traditionally been considered a prob-
lem affecting the visibility of a target, on very small screens 
the problem escalates to a more general content occlusion 

problem. Since the screen is so small with respect to the 
user’s finger, visually communicating anything can become 
difficult as soon as the user’s fingers make contact with the 
screen. And that includes the visual presentation of target-
ing aids, such as shift’s callout. 
Another perspective on the problem involves the notion of 
duration. The spatial aspects of the occlusion problem are 
straightforward: as illustrated by Figure 16, occlusion gets 
worse (a) the smaller the screen (b) the larger the finger 
(c) the more fingers, and (d) the further the fingers reach 
across the screen. The other main factor, however, has gone 
unnoticed so far: duration: the extent of the occlusion prob-
lem is in fact the product of occluded screen surface times 
the duration of the occlusion. And while front side targeting 
aids can reduce occlusion, they generally do so at the ex-
pense of targeting time [23], which in turn creates addi-
tional occlusion. 

b

d

a c  
Figure 16: Factors impacting the fat finger problem 

The other main finding is that back-of-device interaction 
allows for high accuracy across screen sizes. When trig-
gered using the non-dominant hand (the back-button condi-
tion) error rates averaged 2%. This condition did substan-
tially better than the back-press condition with error rates 
up to 12%. The latter value should be understood as an up-
per bound though; the pressure-based mechanism is clearly 
an early version and the error rate should be expected to 
shrink with improved engineering. 
In summary, the study supports our hypothesis that back-of-
device interaction continues to work on very small screens. 
It suggests that back-of-device interaction is indeed a viable 
approach for bringing pointing input to very small screen 
devices. 

DESIGNING FOR VERY SMALL BACK-OF-DEVICE 
So now that we know that back-of-device interaction has 
promise, what should an application on, say, a nanoTouch 
clip-on look like? Before application designers can start 
designing controls and write applications for such a device, 
they need to know the constraints inherent to back-of-
device interaction. For touch screens, for example, we 
know that users can reliably acquire targets of about 18mm 
and this knowledge drives the design of all higher-level 
components, from menus to applications. But what are the 
respective constraints for back-of-device interaction? 
To begin answering this question we conducted a second 
user study. We investigated the relationship between target 
size and task time and error rate for the two main interac-
tion styles of nanoTouch, which we introduce in the follow-
ing. 



 

 

Land-on, precision, and escalation 
So far, we have talked only about one of nanoTouch’s in-
teraction styles, namely targeting with visual control, as 
made possible by pseudo-transparency [24]. Since it allows 
for precise manipulation we will refer to this also as preci-
sion interaction (Figure 17). 

touch drag commit  
Figure 17: Precision acquisition of a small target 

The other interaction style supported by nanoTouch is tar-
geting without visual control (Figure 18), as introduced by 
earlier back-of-device designs, such as under-table-
interaction [25]. We will call these land-on interactions. 
While land-on selection at the bottom side of an interactive 
table led to large error (requiring 4.5cm targets [25]) we 
would expect more reasonable values on nanoTouch: the 
prototype is small enough to allow users to see a good 
amount of their finger. One might hypothesize that this al-
lows users to estimate the touch position by extrapolating 
their finger. 

touch lift-off  
Figure 18 Land-on acquisition of a large target 

In order to offer both interaction styles at once, we can 
combine precision and land-on targeting into a single inter-
action model (Figure 19). In such a combined model, all 
interactions initially proceed as a land-on interaction. How-
ever, the user can request help, e.g., by holding contact with 
the touch surface beyond a certain time threshold (dwell-
ing). NanoTouch then responds by revealing the pointer, 
allowing users to complete the task as a precision interac-
tion. Since this process resembles shift’s, we call it escala-
tion. Compared to shift’s callout, however, nanoTouch’s 
pointer is fairly unobtrusive. This makes it reasonable to 
escalate early and in most cases we will do so instantly. In 
this case, there is no more distinction on the device level, 
but merely a distinction between two interaction styles. 

land-on
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Figure 19: Escalation: land-on to precision 

USER STUDY 2: TARGETING ON THE BACK 
Participants in this study performed two tasks. The purpose 
of the precision task was to determine the relationship be-
tween target size and task time/error rates. The purpose of 
the land-on task was to determine land-on accuracy. Based 
on these findings, we make design recommendations. 

Interfaces 
There were three interface conditions, all of which were 
implemented using a nanoTouch device. Unlike the previ-
ous study, we kept screen size constant at 2.4”. 
The precision-press and precision-button interfaces corre-
spond to the back-press and back-button conditions in our 
first user study. 
In the land-on condition, participants acquired targets by 
tapping the device backside without receiving any type of 
visual feedback from the device. 

Tasks 
There were two tasks. 
The precision task was identical to the first user study: Par-
ticipants clicked an 11mm (72px) start button to reveal the 
target and start the timer, and then acquired the square tar-
get. Target sizes varied from 1.4mm, 2.8mm, 5.5mm, to 
11mm (9, 18, 36, and 72px, respectively). We added an 
additional smallest target size of 0.6mm (4px) to the button 
condition; piloting had indicated that this target size was 
too error prone in the press condition. Use of the start but-
ton controlled for distance 18.4mm (120px); the start button 
was placed as in Study 1. 
Half of the participants completed this task with the press 
interface, the other half with the button interface. In other 
words, press vs. button was a between-subjects variable. 
Participants performed the land-on task using the land-on 
interface. Unlike the precision task, we did not vary target 
size. Instead, the screen always showed a point-sized target, 
indicated by a crosshair. The participants’ task was to tap 
the device backside as close to the target as possible. We 
recorded the relative location of the tap with respect to the 
target.  

Experimental design 
The design of the precision task was 2 x (4 x 12) [Commit 
method × (Target Size × Target Position)] with 5 repeti-
tions for each cell. As mentioned above, the back-button 
condition was also tested against a 4px target, for a total of 
5 targets. Target positions were the 12 centroids of a regu-
lar 4 x 3 grid. Method of committing was a between-
subjects variable: half of the participants used back-press 
and the other half used back-button. For each trial, we re-
corded task completion time and error. Task order was 
counterbalanced. Target sizes and positions were random-
ized. Participants received up-front training. 
The design of the land-on task was within-subjects. There 
were 12 target positions and 24 repetitions per position. 
Target positions were the 12 centroids of a regular 4 x 3 
grid. Participants received up-front training. 

Apparatus 
Same as in User Study 1. 

Participants 
14 volunteers, 11 male, between the ages of 23 and 47 were 
recruited from our institution. Each received a lunch cou-
pon for our cafeteria as a gratuity for their time. All but 2 



 

 

had experience with touchscreens. None of them had par-
ticipated in Study 1. All were right-handed. 

Hypotheses 
The main purpose of the study was to determine error rates 
and task times for individual target sizes, positions, and 
interfaces in order to inform the design of back-of-device 
user interfaces. As a result, we had no specific hypotheses, 
beyond the obvious expectation that precision button would 
be less error prone than precision press. 

Results 
The findings of this study are captured in the following four 
charts. 
Precision interaction 
Figure 20 shows the error rates for precision-press and pre-
cision-button. Figure 21 shows the respective task times. 
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Figure 20: Error rates for the two precision conditions 

(+/- standard error of the mean). Pink squares show 
the size of the respective targets (to scale). 
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Figure 21: Task times for the two precision conditions 

(+/- standard error of the mean) 

Land-on interaction 
Figure 22 shows the distribution of touch locations for all 
participants for the land-on task. 
Figure 23 aggregates the targeting data from Figure 22. The 
blue line on top shows what percentage of taps was located 
outside of a square box of a given size centered around the 
target. This value can be used as provides an estimate for 
the error rate that a square button of the respective size 
would offer (obviously a rough estimate only, as the pres-
ence of a buttons can affect performance [31]). 

The blue line ends at 80px, where the point cloud of edge 
targets gets clipped at the edge of the device. The magenta, 
middle line is based only on the two center targets, prevents 
it from getting cropped. The red line at the bottom is based 
on the same data, but assumes perfect calibration of the 
device, such that the centroids of the tapping data (for each 
user) coincide with the target. 

 
Figure 22: Land-on: spread of touch positions (requires color). 

Red rings indicate target locations (to scale). 
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Figure 23: Land-on: Percentage of taps that lied outside of a 

square box of a given size. 

Target acquisitions with land-on, required on average 
884ms. 

Discussion & application 
The data shown in Figure 20 to Figure 23 allows us to esti-
mate task times and error rates for acquiring different types 
of user interface elements. 
Example: When designing a soft keyboard on the backside 
of a 2’4” device we could choose a 12-key design. Figure 
23 predicts that, with user-specific calibration, error rates 
with be around 2% per keypress for the 80x80px buttons. 
An alternative full keyboard design might break the device 
backside into 8 x 6 buttons measuring 40x40px each. A 
land-on error rate of close to 40% suggests that we should 
use precision mode instead. If used with a separate button, 
we reach an error rate of about 2% per key press. 
We can use the same process to compute estimates for task 
times and to computer estimates for different screen sizes, 
such as the 1” diagonal pendant from Figure 1. 



 

 

CONCLUSIONS & FUTURE WORK 
In this paper, we have argued that the key to touch-enabling 
very small devices is to touch-enable the device backside. 
While we have demonstrated the effect only for a specific 
technique—shift—it seems reasonable to claim that any 
pointing technique using the device front will run into the 
fat finger/occlusion problem once the screen gets smaller 
than the technique-specific threshold. The presented back-
of-device design, in contrast, works practically independent 
of device size. 
This opens up a very large space of new device designs, 
including the ones shown in Figure 1 and Figure 3. They 
allow us to take a fresh new perspective on a space where 
touchscreen-based designs have not been able to succeed to 
date, such as watch-like form factors. 
In this paper, we made four contributions: (1) nanoTouch, a 
back-of device small-screen device prototype, (2) a user 
study showing that back-of-device interaction works inde-
pendent of device size, while front-touch combined with 
shift fails for screen sizes below one inch, (3) a second 
study providing data that application designers can use to 
make UI design decisions, and (4) four back-of-device con-
cepts ranging from in size from ring to clip-on (Figure 1 
and Figure 3). 
As future work, we are planning on directing our attention 
to interactive back-of-device applications, taking a closer 
look at steering and tracking. We also plan on exploring the 
visual design aspects of back-of-device applications. And 
finally, we plan on creating additional prototypes that ex-
plore new application scenarios. 
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