

Design and Analysis of Delimiters for
Selection-Action Pen Gesture Phrases in Scriboli

Ken Hinckley, Patrick Baudisch, Gonzalo Ramos, Francois Guimbretiere
Microsoft Research, One Microsoft Way, Redmond, WA 98052

{kenh, baudisch}@microsoft.com, bonzo@dgp.toronto.edu, francois@cs.umd.edu

ABSTRACT
We present a quantitative analysis of delimiters for pen
gestures. A delimiter is “something different” in the input
stream that a computer can use to determine the structure of
input phrases. We study four techniques for delimiting a
selection-action gesture phrase consisting of lasso selection
plus marking-menu-based command activation. Pigtail is a
new technique that uses a small loop to delimit lasso
selection from marking (Fig. 1). Handle adds a box to the
end of the lasso, from which the user makes a second stroke
for marking. Timeout uses dwelling with the pen to delimit
the lasso from the mark. Button uses a button press to signal
when to delimit the gesture. We describe the role of
delimiters in our Scriboli pen interaction testbed, and show
how Pigtail supports scope selection, command activation,
and direct manipulation all in a single fluid pen gesture.

Author Keywords
Pen input, marking, delimiters, tablets, gestures

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Input

INTRODUCTION
In graphical user interfaces, selecting a group of objects and
immediately selecting the command to apply to them is a
ubiquitous pattern of interaction. For example users might
click and drag to sweep out a selection region, and then
click on a tool palette or menu to choose a command. This
typically requires a round trip [7] between the work area
and the tool palette or menu bar. While experts sometimes
can avoid round trips by learning keyboard shortcuts, this
approach only works for desktop configurations. Tablet
computers typically have no keyboard, making round trips
with the pen unavoidable and tedious.

While the selection-action pattern occurs with high
frequency in most pen interfaces, the literature lacks a
careful study of how the selection and action subtasks can
be combined efficiently. We contribute an experimental
analysis and new hybrid approaches that allow designers of
pen interfaces to support transitions between and
effectively link together selection-action phrases [4]. Our

goal is to research new building-blocks for pen interfaces
that are (1) rapid, with no dwelling or repetitive prompting,
but instead using fast, repeatable actions that, with expert
use, make minimal demands on visual attention; (2)
unambiguous, with no recognition unless the user explicitly
calls for it; and (3) expressive, supporting a variety of
commands and using general mechanisms that are not
tailored to a specific application domain.

Fig. 1. Pigtail splits the user’s gesture into a lasso,
which here selects the ink, and a mark, which here
chooses the Copy command from 8 possibilities.

Fig. 2. Drawing the tail in different directions chooses
other commands. Left: Cut is north; Right: Move is east.
One of these key building blocks is the delimiter.
Delimiters allow interactive systems to determine the
lexical structure of an input phrase [3]. They play a dual
role of connecting tokens while also separating tokens from
one another. We focus on delimiters in selection-action
phrases, that is, how to merge object selection and
command activation in a single fluid interaction. In this
paper, we analyze four delimiters for selection-action tasks:

Pigtail: drawing a small loop at the end of the lasso, with
the “tail” interpreted as the mark (see Fig. 1, Fig. 2).
Timeout: pausing with the pen at the end of the lasso;
Button: pressing a button to explicitly indicate when the
computer should stop the lasso and start the mark;
Handle: lifting the pen after drawing the lasso, then making
a mark starting from a handle the system adds to the end of
the lasso (as proposed in [12]; see Fig. 3).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00.

We study how these delimiters perform when used to
segment a single gesture combining lasso selection of a
group of objects with marking menu command selection.
Lasso selection is the act of circling one or more objects
with the pen. Most current Tablet PC applications use
tapping for selection, but this just reflects the desktop’s
legacy. Lassoing is often favored in the pen literature [6, 9,
12, 17, 18] because it is very well suited to selecting
handwritten notes or diagrams, which typically contain
many small ink strokes that would be tedious to tap on
individually. Marking menus use a straight pen stroke to
select a command from one of 8 compass directions. We
focus on marking menus in our experiment because they
have been shown to be a rapid and effective means for
command activation. While marking menus used in
isolation have been rigorously studied [13, 15, 24],
techniques to combine scope selection with marking have
received less attention [12].

Our results show that statistically the Handle, Button, and
Pigtail techniques are equally fast. Handle was preferred by
the most users and had a 3% error rate (of selecting an
incorrect marking direction) compared to 5% for Button
and 6% for Pigtail. Some users preferred Pigtail, but others
found it took practice to master. Although Timeout was
significantly slower than the other techniques, several users
preferred it, as it was easy to learn and had less than 0.5%
errors. Nobody liked the Button, as it proved difficult to
correctly time the button press. We also report a
preliminary follow-up study of a design iteration of Pigtail
that suggests it can yield performance similar to Handle,
thus making it a promising new design alternative.

Fig. 3. The Handle. Left: The first stroke is the lasso.
Right: A 2nd stroke starting on the handle is the mark.
Pigtail offers designers of pen interfaces some unique
design properties, such as the ability to signal a state
transition in the midst of a pen stroke via self-crossing. To
study these we are developing the Scriboli testbed. The
name is a play on Tivoli [18] that evokes the fast, informal,
and uniquely pen-based scribbling nature of the interactions
we seek to design. Scriboli is a prototype application with
limited functionality, similar in sprit to GEdit [12], but we
plan to support note-taking and drawing functionality
similar to Windows Journal or OneNote on the Tablet PC.

Scriboli demonstrates key aspects of the Pigtail delimiter
including: a simple animated self-disclosing mechanism;
compatibility with various methods of scope selection
including disjoint selections; and support for combining
scope selection, command activation, and parameter
specification via direct manipulation all in a single stroke.

RELATED WORK
GEdit [12] proposes selection-action techniques such as
drawing a lasso for selection, and then ending the stroke
inside the lasso to Delete the selected objects, or ending the
stroke outside the lasso to Move a group of objects. To
Copy a group of objects the user makes the Move gesture
but adds a “C” to the end of it. However, these techniques
only support three commands (Move, Copy, and Delete) for
groups of objects, and the system suffers inconsistencies
between “multiple object” and “single object” versions of
commands. The delimiter techniques explored in our work
generalize and extend GEdit’s techniques, providing a
consistent mechanism to apply any of 8 different marking
menu commands to one or more objects. GEdit even shows
a user making a loop similar to our pigtail gesture as the
user transitions from lassoing to moving a group of objects
([12], page 141, Figure 5), but GEdit does not recognize
such loops or use them as part of the interface’s design
vocabulary. Similarly, FlowMenu [10] shows loops being
formed in the course of the user’s input, but these are
incidental, and do not serve as lexical breaks.

Tivoli [18] uses a pigtail gesture to represent the Delete
command, but only recognizes the pigtail after the pen is
lifted. Our system instead uses pigtails as a delimiter:
Scriboli looks for pigtails during gesture mode while the
pen moves in contact with the display. A self-intersecting
gesture meeting our recognition criteria for a pigtail
immediately triggers marking mode, before the pen is lifted.
As Moran et al. note, “Prompting techniques, such as
marking menus, can only partially help [users to recall
gestures], because many of our gestures must be drawn in a
spatial context to indicate their meaning” ([18], p. 53).
Pigtail helps to address this fundamental design problem by
providing prompted marking commands as a possibility
during almost any pen gesture indicating a spatial context.

Fluid Inking [23] explores the use of punctuation as a type
of delimiter in pen interfaces. A tap is used as a cue to the
system to attempt to recognize the preceding ink stroke(s).
Stylus input without prior selection of mode [21] takes a
recognition-based approach to classify lassos drawn during
ink mode as selection gestures, and to provide options in a
menu if it is uncertain.

Many pen interfaces support an ink mode for entry of raw
ink strokes, and a gesture mode for entering commands [18,
19]. Li et al. [16] show that using the nonpreferred hand to
perform an explicit press of a button on the Tablet PC’s
bezel is a robust technique for ink/gesture mode switching,
costing only 139ms per mode switch with about a 1%
incidence of mode errors. Our delimiter techniques are
intended for use in gesture mode. Since Li et al. carefully
analyze mode switching issues, our experimental task
always stays in gesture mode, allowing us to focus fully on
delimiters. However, outside of the experiment, Scriboli
uses the nonpreferred hand button technique [16].

Crossing interfaces form an area of recent interest for pen
interaction [1, 2]. Pigtail suggests self-crossing of a gesture
as a new design element for pen interfaces. Although our
experiment focuses on lasso selection, we designed all four
of our delimiter techniques to be general methods that are
applicable to other methods of indicating scope. For
example, Fig. 4 illustrates crossing and tapping scopes.

DELIMITER TECHNIQUES
We now discuss the delimiters used in our experiment, so
that others can understand our design decisions and
reproduce our work. We implemented each technique as
closely as possible to the way we expected it would actually
be used in practical applications.

Pigtail Delimiter
Pigtail uses the self-intersection point of the loop to
terminate the scope (lassos are closed via automatic
completion [17]). The self-intersection point also defines
the origin of the marking menu. Any additional self-
intersections are ignored1. Our system starts marking mode
(and makes the audio cue) as soon as it identifies a self-
intersection in the pen trace that meets our recognition
criteria for a pigtail. We pop up the menu if the user has not
completed a mark more than 20 pixels long within 333ms.

We only look for pigtails in gesture mode, as natural
handwriting contains many closed loops. Pigtail attempts to
leverage existing skills of users for the mechanics of
handwriting, which essentially consists of variations on
small rhythmic looping motions with the stylus [22].

Our recognition of pigtails is straightforward. Each new
sample of a gesture forms a line segment. We search the
current pen stroke backwards over a 2000ms time window
looking for an intersecting line segment. If one is found, we
compute the area A and perimeter P of the resulting closed
polygon. We ignore degenerate loops (A<5 or P<15 pixels)
that tend to occur at inflection points in the pen stroke.
Large loops (A>5600 pixels) typically represent self-
intersection of a lasso. Everything else is treated as a
pigtail. False positive recognition of pigtails is possible, e.g.
a small self-intersecting lasso is interpreted as a pigtail.
This is not a problem, as automatic completion allows the
same selection using a non-self-intersecting lasso.

Handle Delimiter
The Handle delimiter is based on GEdit’s technique of
attaching a small box to the end of the selection lasso [12].
The purpose of the handle is to provide an activation point
for the scope so that the user can defer the action portion of
a selection-action command phrase to a later point in time,
i.e. a subsequent gesture stroke. Kurtenbach & Buxton
focus on continuous pen gestures, but point out that
splitting such operations into two steps can sometimes be
advantageous, such as when selecting a very complex
scope, or when re-using a scope for multiple commands.

1 In our design iteration, we found this design decision may have
been a mistake (see the Design Iteration: Pigtail-2 section).

In our implementation, a 48x48 pixel handle (Fig. 3)
appears as soon as the system receives the Pen Up event for
a valid lasso. Upon a Pen Down event inside the handle,
marking mode begins and we provide the user with a brief
audio cue to signal this. If the user has not completed the
mark within 333ms, we pop up the menu [12].
We considered using the entire lasso region as a handle, but
decided against this. If the user draws too large of a
selection region by mistake, it becomes cumbersome to fix
this because starting a new lasso within the mistaken one
would be interpreted as a mark. And if all pen events inside
the lasso are interpreted by the marking menu, this prevents
applications from supporting other gestures (e.g., tap, tap-
and-hold, drag) within a lasso. Finally, it also prevents the
use of nested circles of exclusion [12] to except objects
from the scope. Hence the handle is a more general
technique that still provides very quick access to marking.

|

|

Fig. 4. Pigtail and Handle with crossing and tapping.
Top: The user crosses one icon, crosses a second icon,
and then makes a Pigtail to move both icons. The user
can also tap objects and then draw a pigtail. Bottom: In
these cases handles may get in the way or be ambiguous.

However, Handle has its limitations, particularly when
applied to very small scopes or disjoint scopes. For
example, the situations depicted in Fig. 4 represent tough
cases for the Handle delimiter for two main reasons:
Inaccessible space. Much of the empty space between the
icons becomes inaccessible for crossing due to occlusion by
the handle, making it difficult to successfully draw the
second crossing stroke (Fig 4, bottom left). Tapping on one
object may make other small objects nearby unreachable
(Fig 4, bottom right). Reducing the size of the handle would
make it slower and more difficult to hit with the pen.
Ambiguity. It is not clear how to operate on a collective
scope since there may be more than one handle. Does each
handle affect just the scope it is attached to, or all of them?
How does the user disambiguate this confusing situation?
As Kurtenbach & Buxton [12] note, “We have established
the convention that [a] command must be initiated [from
the handle] if it is to affect the encircled objects. The
dilemma is, […] should an operation on one simultaneously
affect the other? In GEdit, the answer is no.”
Pigtail’s design eliminates both of these problems.

Timeout Delimiter
Many pen-operated devices use a pause without moving the
pen as a way to synthesize an extra input state [5]. Our
Timeout delimiter is a drag-and-hold gesture, which
requires holding the pen still for 500ms while dragging

(drawing the lasso). We evaluated this technique with test
users in a previous project [11], where we found a 500ms
delay between cessation of pen movement and popping up
the menu represents a good tradeoff between popping up
the menu as rapidly as possible, while not being so short a
delay that it leads to excessive accidental activations.

When the 500ms timeout expires, we provide the same
audio cue as used for the other delimiters. However, we
decided to pop up the menu immediately instead of waiting
an additional 333ms. As seen in Fig. 5, our menu has a
minimal visual footprint, so we felt that it would not
distract users. We did try using the extra 333ms delay in
pilot studies, but some users always waited for the menu to
appear, which might bias results against the Timeout
technique, so we decided to use only the 500ms timeout.

Fig. 5. Timeout technique. As shown here, the menu
pops up as soon as the 500ms timeout expires.
Our implementation allows for pen travel (incidental
movement of the pen) during the timeout. The pen is
considered to be stationary as long as it remains within ±5
pixels of the position at which the time-out started. Motion
beyond this threshold restarts the timeout.

Button Delimiter
Since Li et al. [16] found using a button in the nonpreferred
hand very effective for ink/gesture mode switching, we
wondered if a similar button might be effective as a
delimiter. The Button Delimiter uses the timing of a button
press as a cue to indicate when to delimit an ink stroke.
Participants in our study used their nonpreferred hand to
press the CTRL key. When our system observes the Key
Down event, we start marking mode (again producing an
audio cue), and use the current pen position as the origin of
the marking menu. The menu pops up 333ms later.

Fig. 6. Button delimiter. Here the user hits the button
too early and selects NE instead of E as intended.
Pilot testing led us to suspect that the Button technique
might suffer from synchronization errors: it seems to be
difficult to hit the button at exactly the right moment. Fig. 6
shows an example where the user intended to select E, but
hit the button too early and instead selected NE by mistake.
On the other hand, if one can time the button press
correctly, or if one can plan ahead such that the lasso is
already heading in the desired direction at the time of the
button press, the technique seems very fast.

We considered implementing a “rollback mechanism” that,
upon the Pen Up event, searches backwards in the pen trace
looking for an inflection point to determine the marking
direction. However, for single-level marking menus, this is
prone to accidentally recognizing curves in the lasso as
inflection points. For two-level marking menus, this
introduces an ambiguity; e.g. in Fig. 6, the recognizer
cannot determine if the user intended to select NE E, or if
the user intended only to mark to the E but hit the button
too early. Since there is no clear solution to this problem,
we decided to evaluate the Button delimiter as-is to see if
synchronization errors are really an issue in practice.

EXPERIMENT
Our experiment focused on delimiters for pen gestures. The
goal was to evaluate the time efficiency and error rates of
the Pigtail, Handle, Timeout, and Button delimiters.

Experimental Task
The experimental task prompted users with a selection
region and a marking direction. The user’s task was to lasso
the items in the selection region and apply the correct
marking direction to those objects. The marking direction
to choose appeared at the top of the screen, using a filled
pie wedge labeled with the compass direction (Fig. 7).

Fig. 7. Example screen from the experiment.
Users were prompted with 9 square targets, each 64x64
pixels, forming a 3x3 grid centered on the screen, with 64
pixels of empty space between targets. Each target
contained a single letter; the purpose of the letter was to
make the targets distinct and to make it clear that the square
represented an “object” and not just an outline. The targets
to be selected were shown bolded in black, while other
“distractor” targets were shown in gray. The targets were
considered to be inside the lasso as long as the center point
of the target fell within the lasso. Subjects were instructed
that lassos are automatically completed and that lassos can
be a bit “sloppy” and cut off the corners of the squares.

A correct response by the user was rewarded with a happy
sound and a “Got It!” message; after 500ms, the experiment
advanced to the next trial. An incorrect selection and/or
incorrect marking direction played a “miss” sound and
indicated the error (e.g. “NE is WRONG: Select N”). This

remained on the screen for 1750ms so that users could see
their error before the next trial started.

The Selection Type was either a single target or multiple
targets. For multiple target selections, the selection always
consisted of 3 contiguous squares, randomly selected as one
of the rows or columns of the grid. We considered using
more complex selections, but decided not to for two
reasons. First, the locality of reference principle implies
that users will most frequently select a set of objects that
are spatially proximal, such as a line of handwriting or a
column of a table. Irregular selections are less common.
Second, our experimental design includes all possible
marking directions for each selection type, so adding more
selection types would have made the experiment too long.
We plan to explore irregular selections as well as scope
selection gestures other than lassos in future experiments.

Experimental Design
Independent variables included Delimiter Technique
(Pigtail, Handle, Timeout, Button), Marking Direction (N,
NE, E, SE, S, SW, W, or NW), and Selection Type (Single
or Multiple). Dependent variables included Completion
Time (the time between Pen Down at the start of the lasso
to Pen Up at the end of the mark) and Direction Errors (i.e.
the rate of incorrect marking direction selection).

For each technique tested, the experimenter explained the
technique to be used. Participants performed 32 practice
trials to familiarize themselves with the technique. Then
they performed 80 main experimental trials. The trials were
clustered into sets of 5 repeated trials prompting the user
with the same objects to select and the same marking
direction to choose. We structured the experiment with
clusters of repeated prompts so that we could simulate
prolonged practice with each technique in a short time.

Participants then completed a repeated invocation block
consisting of 24 repetitions of an identical trial. These trials
repeatedly prompted the user with the same square to lasso,
and the same mark (East). We chose East for repeated
invocation as this seems to be a “sweet spot” in the menu
that we expect would be assigned to a frequently used
command. The repeated invocation block allowed us to
assess the performance limits of each technique.

We employed a 4x4 Latin square to minimize order effects,
with 2 participants each in 8 different orders. One
participant did not show up, leaving the Pigtail 1st orders
with just three users instead of four. We were not able to
replace this participant, but our analysis showed no order
effects. Thus the experiment included 15 users, each with:
 4 Delimiter Techniques x
 32 practice trials +

8 Marking Directions x
2 Selection Types x
5 trials = 80 main experimental trials
+ Repeated Invocation block of 24 trials
= 136 trials per condition

=8160 total trials (including 1920 practice trials, 4800 main
experimental trials, and 1440 repeated invocation trials).

Apparatus and Tablet Configuration
Each participant ran the experiment on a Toshiba Portege
3500 TabletPC, running Windows XP SP1 Tablet Edition,
with a 24.5 x 18.5 cm (1024 x 768 pixel) display. Since the
Button technique uses the CTRL key, we had subjects use
the TabletPC in the “clamshell” configuration, with the
screen open and angled upwards to make the keyboard
accessible. We supported the angled tablet screen from
behind with several heavy books so that it would provide a
solid, stationary writing surface during the experiment. All
subjects used the tablet on a desk. Subjects were
encouraged to angle the tablet and screen as they preferred.

Participants
Fifteen persons participated in the study. We recruited users
with pen computing experience, as Scriboli’s targeted users
are current TabletPC users (8/15 participants) or likely
future tablet users. All participants were male as it was
difficult to find female participants. One was left-handed.

RESULTS
Subjects took approximately 20 minutes to complete each
technique, including practice trials, the main experimental
trials, and the repeated invocation block.

Completion Time: Main Experimental Block
We conducted a 4 (Delimiter Technique) x 8 (Marking
Direction) x 2 (Selection Type) within-subjects ANOVA on
the median completion time within each cell of the
experimental design for the main experimental trials. We
used the median completion time to correct for the typical
skewing common to reaction time data; this also removed
the influence of any outliers in the data. Order of
presentation was included as a between-subjects factor, but
yielded no main effect or significant interaction effects.

1.17
1.01

1.47
1.26

0.95

1.38
1.23

0.84

1.92

1.56

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

Button Button-RI Handle Handle-RI Pigtail Pigtail-RI Pigtail2 Pigtail2-RI Tout Tout-RI
Fig. 8. Average completion time. For each Delimiter
Technique, the left bar is the main block; the right bar
is the repeated invocation (RI) block. The Pigtail2 bars
show preliminary results for our design iteration.
We analyzed completion time (Fig. 8) only for correct
responses. While running the experiment, we observed that
on the first trial of a new set of 5 repetitions of the same
selection-action prompt, subjects often started to respond
using the prompt they had just experienced in the preceding

set of 5 trials. Thus we decided to remove the first trial of
each set of 5 repeated trials from our analysis. Our analysis
revealed a significant effect for Delimiter Technique,
F(3,21)=18, p<.001. Post-hoc (Bonferroni) pairwise
comparisons revealed that Timeout was significantly slower
than all other delimiters (p<.01), but completion times for
Pigtail, Handle, and Button did not differ significantly from
one another. As expected, Selection Type F(1,7)=151, p<.001
was also significant, as the multiple-target lassos took more
time to draw. Marking Direction did not yield a significant
main effect. There were no significant interactions.

Completion Time: Repeated Invocation Block
A 4-way ANOVA on the median completion time for each
subject’s repeated invocation block (excluding all error
trials) revealed a significant main effect of Delimiter
Technique (F(3,42)=13.7, p<.001). Post-hoc pairwise
(Bonferroni) comparisons revealed that the Timeout was
again significantly slower than all other techniques (p<.01),
but that the other 3 techniques did not differ significantly.

Inspection of the mean completion time over the 24 trials
revealed some interesting trends (Fig. 9). This graph
includes error trials. Subjects clearly experienced problems
with the Button technique: unlike the other three delimiters,
completion time shows an unstable trend. This suggests that
users could not effectively compensate for synchronization
errors with practice: the problem instead became worse.

The Pigtail and Handle follow performance curves that
appear very similar to one another. The Timeout technique
appears to quickly reach a plateau, suggesting a possible
floor effect on performance due to the timeout.

-

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Handle Pigtail Timeout Button

Fig. 9. Learning effects for repeated invocation block.
Errors: Main and Repeated Invocation Blocks
A Kruskal-Wallis nonparametric test on Direction Errors in
the main block (Fig. 10) revealed a significant effect of
Delimiter Technique, χ2

(3, N=64) = 35.4, p<.001. Additional
tests for Marking Direction and Selection Type showed no
significant effects. In the repeated invocation block, A
Kruskal-Wallis test again revealed a significant effect for
Delimiter Technique, χ2

(3, N=60)=18.3, p<.001. The Button
Delimiter Technique error rate increased from 4.6% in the
main experimental block to 8.1% in the repeated invocation
block, suggesting that synchronization errors are
exacerbated when the user tries to work quickly, and that
practice does not seem to reduce such errors.

4.6%

8.1%

2.7%

0.8%

6.0%

2.5%

4.0%

0.0% 0.4% 0.3%
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

Button Button-RI Handle Handle-RI Pigtail Pigtail-RI Pigtail2 Pigtail2-RI Tout Tout-RI
Fig. 10. Marking Direction error rates. Pigtail2 shows
the tentative error rate of our design iteration.
Qualitative Results
After the experiment, we asked participants to rank-order
each of the four Delimiter Techniques. Seven participants
chose Handle as their favorite technique, 4 chose Pigtail,
and 4 chose Timeout. Nine participants ranked the Button
as their least favorite technique; 3 chose Pigtail, 3 chose
Timeout, and nobody ranked Handle as their least favorite.

Clearly, Handle was a predictable technique that provided
fairly fast performance for most users. But response to
Pigtail was mixed; some users loved it, and others felt that
it did not work well for them. For example, one user
commented that the Pigtail “felt just like handwriting… it
was very natural and once I learned it I could open up and
fly!” while another wrote “Pigtail was trouble. I got a little
mad at it.” Participants felt it took some time to learn, and
may need more than 15-20 minutes to become proficient.

The Button clearly was not successful. Using the timing of
the button press seems to be a poor choice from a human
performance standpoint as users cannot overcome problems
with synchronization errors; even though two of our
participants recorded their fastest average times with the
Button, it was uniformly disliked. There is not any obvious
technical solution to its problems, and repeated use only
results in higher error rates as the user tries to go faster.

The Timeout technique was slower than the other
techniques, but also had by far the fewest errors (<0.5%),
suggesting it would be the best technique to use in contexts
where errors might have a very high cost. User reaction to
Timeout was mixed. All users felt the technique was easy
to learn. Some loved its dependability, while others
detested having to dwell. Many users felt it is a “good
technique for beginners” but “hate waiting for the
computer” and want a way to go faster.

DESIGN ITERATION: PIGTAIL-2
Although Handle had the best overall performance in our
experimental study, we felt that Pigtail was worth further
investigation due to its novelty and unique design
properties. If small improvements can reduce the error rate
of Pigtail, it may offer a compelling design alternative to
the Handle delimiter.

Limitations of Initial Pigtail Implementation
While observing our experimental participants, it became
clear that it was not satisfactory to simply define a pigtail as
the first closed loop with area 4<A<5600. In the practice
session, some participants naturally seemed to start by
drawing loops larger than this threshold, resulting in an
unrecognized input. This often led to a task strategy of
circling multiple times to ensure an intersection; we believe
this strategy may have slowed performance and led to more
error-prone marking menu selections. However, this seems
a problem that may be ameliorated with a better recognizer.

Some users produced pretzels (Fig. 11) for certain marking
directions. Although these were recognized as pigtails,
using the first self-intersection to define the origin of the
menu may result in marking menu direction errors.

Fig. 11. Left: Pretzel drawn for prompt of SE. Middle
(incorrect): Using the first intersection leads the system
to mistakenly view S as the mark. Right (correct): Our
new design correctly interprets the trace to select SE.
We also observed that since the user’s hand is moving in a
circular motion to form the pigtail, the resulting mark often
makes a curve rather than a straight line. Some direction
errors occur when the user “curves” a bit too much.

An inherent limitation of the Pigtail is that for new users,
some marking directions seem harder to choose than others.
In particular, marking in the direction opposite of the
current direction of pen motion requires some practice.

Pigtail2 Design Changes to Address Limitations
In response to these problems, we eliminated the upper
bound on the pigtail size: our Pigtail-2 design iteration
allows any self-intersection of the pen trace above a
minimum area as a pigtail. As a result we must consider
multiple self-intersection points as candidates (Figs 11, 12).

We start by assuming the first intersection point is the
correct origin for the menu. This may in fact be the user’s
intent, and we cannot wait until the pen is lifted to decide.
We then recenter the marking menu at a later self-
intersection point if our algorithm determines that it is a
better candidate for a pigtail. Recentering the menu in this
manner did not seem to cause any significant problems for
test users in a preliminary pilot study of Pigtail-2, although
one user felt it was sometimes a little distracting. But
recentering allows us to accept pigtails of any size and to
correctly interpret traces such as those shown in Fig. 11 and
Fig. 12. A pigtail is deemed better than the previous
candidate if (1) their time intervals overlap and the ratio of
perimeters is less than 1.75, or (2) if the centroid of the new
pigtail falls within the lasso and the ratio of perimeters is
less than 0.6.

Note that with this technique, any self-intersecting lasso is
treated as a “pigtail” that selects the contained items and
invokes a marking menu. To select items without acting on
them, the user must draw a non-self-intersecting lasso.

Fig. 12. Example of a very large pigtail with two
intersection points. Here the user correctly selects S.
We also dynamically adjust the marking menu sector
boundaries based on the stroke path to accommodate users’
natural curving motions. We slightly expand the marking
menu sector that currently contains the pen stroke. We
expand the boundary by 3°, but only in the direction of the
pigtail loop (typically counterclockwise). Once the trace
passes this 3° expansion, the adjacent sector becomes
selected, and the boundary is adjusted back to its original
position (with no expansion).

Pigtail-2 Preliminary Results
We ran a pilot study, using 6 colleagues (5 male, 1 female)
to reproduce the Pigtail condition of our experiment. The
enhancements noted above do seem to improve
performance of Pigtail, particularly with respect to errors:
Pigtail-2 resulted in 4% errors in the main block of the
experiment, and we observed no errors in the repeated
invocation block. The average completion times also
dropped slightly to 1.23 seconds (main block) and 0.84
seconds (repeated invocation block), but these have high
standard deviations due to the small number of pilot
subjects. These are shown as tentative results in Figs. 8, 10.

In some implementations, designers may not wish to allow
arbitrarily large self-intersecting loops to be interpreted as
pigtails. Inspection of the frequency distribution of pigtail
size (including practice trials) suggested the presence of a
bimodal distribution, with 93.5% of pigtails having an area
of 10000 pixels or less. The remaining very large loops
mostly represent self-intersecting lassos that lack a true
“pigtail.” Our pilot users infrequently made their marking
menu selections in this manner; most subjects experimented
with it a few times, but abandoned it in favor of a more
consistent strategy of always forming a pigtail loop and
then heading in the desired direction. This suggests that
using an upper bound of approximately A<10000 pixels
would likely be acceptable to most users and have little
impact on performance of the technique.

DISCUSSION OF THE SCRIBOLI TESTBED
We now discuss our Scriboli pen interaction testbed and
show how we currently use Pigtail in an application
fragment. The intent of this discussion is to give the reader
a better understanding of how we envision using delimiters

in an application (as opposed to our experimental task), and
also to raise a number of design issues that we considered.

Scriboli includes support for freeform ink input, pen
gesture input, and structured objects (e.g. pictures and
icons). We plan to develop Scriboli into a “scrapbook”
application supporting note-taking and ideation activities
surrounding personal photographs, drawings, or clippings
from the Web, for example. In its present form Scriboli is
not intended to be a complete application, but is a testbed
and tool for us to experiment with design alternatives and
conduct quantitative studies on pen input techniques.
Scriboli currently implements Cut, Copy, Paste, and Move
operations on all objects, plus a few other commands. Our
figures and accompanying video show a number of other
commands in Scriboli’s menus; these are unimplemented
placeholders that give a feel for how a more fully featured
application could be structured using our techniques.

Preserving the Design Space of Gestures
A primary design goal for Scriboli was to devise techniques
that could be applied to a wide range of pen-operated
interfaces. For this reason, we tried to be very careful not to
consume any more of the design space of pen interaction
states [5] and possible gestures than absolutely necessary.

In the course of demonstrating Scriboli to colleagues, some
have suggested that we could just use the final direction of
a lasso selection (without any delimiter) as the marking
direction. This might work (although the user would have
to plan how to draw the lasso to end in the correct
direction), but it is not a very general technique because it
would impose a command activation (marking) phase upon
all gestures. This would make it impossible to draw a
gesture that is not immediately interpreted as a command.

For example, when the user starts drawing a lasso in
Scribioli, the user may safely lift the pen and start over at
any time if he or she makes a mistake. But this type of
failsafe operation would not be possible if the system
interpreted all gestures as ending with a mark. The presence
of a delimiter leaves the user in control of whether or not a
transition to marking mode occurs. Furthermore, without a
delimiter, it would not be clear when to pop-up the menu
for prompted selection. This would prevent self-revelation,
which is widely considered to be one of the major benefits
of the marking menu approach. One could use a pause to
pop up the menu, but then this essentially becomes the
equivalent of our Timeout delimiter technique (i.e. it
introduces a delimiter).

Self Revelation of Pigtail via Stroke Extension
After watching our experimental participants learning to
use Pigtail, it was clear it could be improved by making it
more easily discoverable and by somehow providing the
user with examples of how to draw the gesture. Since our
participants found Timeout simple to learn, but tedious to
wait for with repeated use, we felt that we could improve
on both techniques by combining them in a new hybrid
approach. Some devices that support tap-and-hold already

provide speculative feedback that shows a button press
animation or a circling clock before the timeout expires.

Like the Timeout technique, Stroke Extension (Fig. 13) uses
a pause while drawing a gesture to initiate a timeout. The
system draws an animated extension of the current stroke
to form a pigtail for the user. If the user continues dwelling,
the system pops up the menu (like the Timeout technique).
If the user instead draws a pigtail, this short-circuits the
timeout so that the user need not wait for the computer.

We are also experimenting with stroke extension after a
Pen Up event for a scope that lacks a pigtail. In this case,
the menu does not activate, but the user must instead trace
the dotted line, thus drawing a pigtail and bringing up the
menu. Unlike the Handle technique, this stroke extension
disappears after a couple of seconds, and does not make
any pixels of the screen unreachable.

Fig. 13. Animated stroke extension (see also our video).
Left: Stroke extension shows how to draw a pigtail.
Right: The menu pops up when the animation finishes.
Kurtenbach et al. [14] explore contextual animation of
gestural commands in Tivoli. Tivoli provides animated
gestures, but they are not appended to a user’s ongoing pen
stroke in real time. Rather they must be explicitly requested
by clicking on a “crib sheet” of available gestures. Stroke
Extension is a novel technique that allows Scriboli to show
the user how to draw the pigtail shorthand gesture that can
be used to short-circuit the timeout. New users can wait for
the timeout, but in so doing can also be led to learn the
pigtail as a way to speed their performance.

Types of Scopes
Our experiment focused on delimiters for lasso selection.
Scriboli implements several other types of scopes.

Fig. 14. Disjoint scope via holding the gesture button.
The user draws two lassos, then pigtails to Copy both.
Scriboli supports disjoint scopes (Fig. 14). Scriboli allows
the user to continue holding the nonpreferred hand
ink/gesture mode button of Li et al. [16], thus using muscle
tension to phrase [4] together multiple pen gesture strokes.
Reselecting an object toggles its selection bit, allowing
scopes with exceptions: for example, a nested lasso
deselects the encircled objects [12]. Note that disjoint

scopes can be used to effectively work at the edges of the
screen; the user can lasso objects near the bezel, and then
separately draw the pigtail elsewhere. Disjoint scopes
underscore the design advantages of the Pigtail technique,
as the user can combine various scopes into a single phrase
that is terminated by a special operator (the pigtail). As
shown earlier in Fig. 4, the Handle technique suffers in
such situations.
A single item scope accesses the menu specific to an
individual object on the screen. Drawing a pigtail on top of
a single item (with no preceding lasso) selects that item and
activates its menu. Here, we select the topmost item that is
hit by the self-intersection point of the pigtail. This is the
equivalent of a click with the mouse, but has the virtue that
it leaves the pen’s Tap event available for other application-
specific uses, rather than consuming it for menu activation.

Scriboli does optionally support tapping scopes, however.
Tapping is the ultimate way to select individual objects in a
cluttered scene. Tapping cannot lead directly to a pigtail:
the user must tap object(s) to select them, and then
separately draw the pigtail, which acts on the selection.

Scriboli also supports crossing [1, 2]. A crossing scope is
any line that completely crosses one or more objects (e.g.
Fig. 4). Crossing is distinguished from lassoing by initially
assuming the stroke is a lasso, and then comparing the ratio
of the automatic completion line to the stroke length. A
value near unity indicates a crossing stroke.

Finally, the null scope allows access to a global menu by
drawing a pigtail over empty space (with no prior
selection). This menu currently includes commands such as
Paste, Exit, Next Page, and Previous Page. The Paste
command uses the self-intersection of the pigtail to
determine where to Paste the clipboard contents.

Continuous Direct Manipulation Phase in Scriboli
Pigtail supports a direct manipulation phase similar to that
of FlowMenu [10] or ControlMenu [20] to allow the
integration of command selection with direct manipulation.
For example, a FlowMenu user can select Move, cross the
outer boundary of the menu, and continue dragging to
interactively reposition an object. FlowMenu also supports
a Select command that starts a lasso upon crossing the outer
menu boundary ([8], video for [9]). But FlowMenu cannot
first specify the scope and then the command; it has to be
the other way around. Unlike FlowMenu, Pigtail supports
all three phases in a single continuous pen stroke (Fig. 15).
FlowMenu always uses crossing of the outer boundary of
the menu to activate commands, whereas marking menus
exhibit scale independence [24] so that the user can draw a
mark of varying sizes in the mark-ahead mode. In practice
this means the command activates on Pen Up, which
prevents traditional marking menus from supporting an
integrated direct manipulation phase.

To enable Scriboli to support a direct manipulation phase
while also allowing for scale independence in mark-ahead
mode, we devised a variation on outer-boundary crossing.

We observed that the scale independence property only
matters in mark-ahead mode: once the visual menu appears,
the scale of the marks is determined by the size of the
menu. But if a command does include a direct manipulation
phase, this will become a visually guided dragging task that
continues beyond the 333ms delay between the start of
marking mode and popping up the menu. So, we support
scale independence for the first 333ms of a mark, but then
support direct manipulation after that time-window expires.

Fig. 15. Pigtail direct manipulation phase. Here the
user drags a copy of the “Ink” to the desired location.
Thus, we simply defer crossing detection until after the
333ms menu popup delay expires. We believe this detail is
an important extension to radial menu techniques, as it
allows our technique to support both scale-independent
mark-ahead as well as a crossing-based direct manipulation
phase. This approach allows designers to unify properties
of the previously separate techniques for radial menus with
crossing [10, 20], versus radial menus with mark-ahead [12,
24]. In our experience with the technique so far, it seems to
work extremely well, but we have not yet conducted
usability testing focused on this feature (menu boundary
crossing was always turned off during our experiment).

CONCLUSION AND FUTURE WORK
Altogether, Scriboli takes an alternative approach to the
design of pen interfaces. It does not place recognition
problems that may be intractable (in the general case of
unrestricted ink input) in the way of providing new user
experiences for currently available pen-operated devices.
Scriboli instead seeks to introduce fundamental building-
blocks that are rapid, unambiguous, and expressive. The
Pigtail delimiter offers one such building- block.

In our experimental selection-action task, our initial
implementation of Pigtail did not perform quite as well as
we had hoped, yet several test users still preferred the
technique. In our study, Pigtail exhibited an error rate of
6%, but this dropped to 2.5% with repeated invocation.
This suggests users can substantially reduce their error rates
with practice. Our Pigtail-2 design iteration suggests that
minor improvements can reduce the error rate of Pigtail to
about 4% with time efficiency that compares favorably to
the other techniques. We plan to further explore Pigtail’s
unique design advantages in future work.

On the other hand, while we initially thought the Button
delimiter might offer a fast approach, our study suggests

that it suffers significant human performance limitations.
Unlike our improvements to Pigtail, we do not see any way
to fix the problems we observed with the Button delimiter.

Since the main problem with the Handle in practice is that
it adds visual clutter and sometimes gets in the way (Fig.
4), it is tempting to make the handle smaller. However, a
small handle would likely make the technique much slower
to use. Some subjects in our experiment achieved fast
performance with the handle by doing a little hop with their
pen at the end of the lasso; the handle was large enough that
this hopping movement would always hit the box. Since our
experiment has shown that the Handle technique offers
good performance and is well accepted by users, we plan to
further study the impact of handle size on performance. We
are also considering ways of improving Handle or of
integrating it with the Pigtail and Timeout techniques, since
they do not inherently conflict with one another.

We would like to conduct a longitudinal study of Pigtail, as
we expect the technique has more value as users become
practiced with it. We are excited to further flesh out
Scriboli and test the overall feel of the interactions when
most or all of an application is accessed in this way. It
should be possible to add support for hierarchical marking
menus [13, 15, 24]. Pigtail allows for a direct manipulation
phase at the terminus of any command, and we devised a
novel implementation that provides this feature while
preserving the scale-independence property of blind
marking. In future experiments we would like to determine
if this integration can yield significant performance
benefits. We would also like to determine if our stroke
extension techniques could serve as the basis of a self-
disclosing gestural interface.

We would also like to explore what new capabilities and
command structures can be added to Scriboli using its
mechanisms for handling complex scopes consisting of
multiple strokes prior to a pigtail for command activation.
Finally, although the present design of Scriboli deliberately
avoids recognition-based approaches, we would like to
explore the use of Scriboli as a correction or direct
manipulation layer for use in conjunction with recognition
methods. In this way users could stay in control yet also
harness the power of sophisticated recognition techniques.

ACKNOWLEDGMENTS
We would like to thank Ed Cutrell, Maneesh Agrawala,
Shendong Zhao, and Gina Venolia for helpful comments.
REFERENCES
1. Accot, J., Zhai, S. More than dotting the i's-- Foundations for

crossing-based interfaces. CHI 2002, 73-80.

2. Apitz, G., Guimbretiere, F. CrossY: A crossing based
drawing application. UIST 2004, 3-12.

3. Buxton, W., Lexical and Pragmatic Considerations of Input
Structure. Computer Graphics, 1983. 17(1): p. 31-37.

4. Buxton, W. Chunking and Phrasing and the Design of
Human-Computer Dialogues. IFIP Information
Processing`86, Amsterdam: North Holland, 475-480.

5. Buxton, W. A three-state model of graphical input. Proc.
INTERACT'90, Amsterdam: Elsevier Science, 449-456.

6. Buxton, W., Fiume, E., Hill, R., Lee, A., Woo, C. Continuous
hand-gesture driven input. Graphics Interface '83, 191-195.

7. Fitzmaurice, G., Khan, A., Pieke, R., Buxton, B.,
Kurtenbach, G. Tracking Menus. UIST 2003, 71-79.

8. Guimbretiere, F., Fluid Interaction for High Resolution Wall-
size Displays. 2002, Ph.D. Thesis, Stanford University.

9. Guimbretiere, F., Stone, M. C., Winograd, T. Fluid
Interaction with High-resolution Wall-size Displays. Proc.
UIST 2001, 21-30.

10. Guimbretiere, F., Winograd, T. FlowMenu: Combining
Command, Text, and Data Entry. UIST 2000, 213-216.

11. Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P.,
Smith, M. Stitching: Pen Gestures that Span Multiple
Displays. Advanced Visual Interfaces (AVI 2004), 23-31.

12. Kurtenbach, G., Buxton, W. Issues in Combining Marking
and Direct Manipulation Techniques. UIST'91, 137-144.

13. Kurtenbach, G., Buxton, W. The Limits of Expert
Performance Using Hierarchic Marking Menus.
INTERCHI'93, 482-487.

14. Kurtenbach, G., Moran, T., Buxton, W. Contextual
Animation of Gestural Commands. Proc. Graphics
Interface'94, 83-90.

15. Kurtenbach, G., Sellen, A., Buxton, W., An emprical
evaluation of some articulatory and cognitive aspects of
'marking menus'. J. Human Computer Interaction, 1993. 8(1).

16. Li, Y., Hinckley, K., Guan, Z., Landay, J. A. Experimental
Analysis of Mode Switching Techniques in Pen-based User
Interfaces. CHI 2005.

17. Mizobuchi, S., Yasumura, M. Tapping vs. Circling
Selections on Pen-based Devices: Evidence for Different
Performance-Shaping Factors. CHI 2004, 607-614.

18. Moran, T., Chiu, P., van Melle, W. Pen-Based Interaction
Techniques for Organizing Material on an Electronic
Whiteboard. UIST'97, 45-54.

19. Mynatt, E. D., Igarashi, T., Edwards, W. K., LaMarca, A.
Flatland: New Dimensions in Office Whiteboards. CHI'99,
346-353.

20. Pook, S., Lecolinet, E., Vaysseix, G., Barillot, E. Control
Menus: Execution and Control in a Single Interactor. CHI
2000 Extended Abstracts, 263-264.

21. Saund, E., Lank, E. Stylus Input and Editing Without Prior
Selection of Mode. UIST'03, 213-216.

22. Wilson, F. R., The Hand: How its use shapes the brain,
language, and human culture. 1998, New York: Pantheon.

23. Zeleznik, R., Miller, T., Holden, L., LaViola, J., Fluid
Inking: Using Punctuation to Allow Modeless Combination
of Marking and Gesturing. 2004, Brown University, TR CS-
04-11, ftp.cs.brown.edu/pub/techreports/04/cs04-11.ps.Z.

24. Zhao, S., Balakrishnan, R. Simple vs. Compound Mark
Hierarchical Marking Menus. UIST 2004, 33-42.

