
A Recipe Based On-Line Food Store

Martin Svensson, Jarmo Laaksolahti, Annika Waern, Kristina Höök
Swedish Institute of Computer Science

Isafjordsgatan 22
Box 1263, S-164 29 Kista, Sweden

{martins, jarmo, annika, kia}@sics.se

ABSTRACT
In this paper we present a recommender system design for
recipe based on-line food shopping. Our system differs in
two major ways from existing system. First we use an editor
that labels clusters of users, such as meat lovers and
vegetarians; based on what recipes they have chosen.
Secondly, these clusters are available to users, so they can
not only choose recipes based on their own user group but
also navigate among other user groups.

Keywords
On-line shopping, recommender systems, social navigation,
collaborative filtering

INTRODUCTION
Existing on-line food stores are all 'dead' spaces where
users fill in how many milk packages, etc. they want to have
delivered to their doorstep. In a study by Richmond (1996)
on shopping in a VR environment, results showed that users
also want to be able to access the social aspects of a
physical store, they want to socialise with other people and
have a multi-user experience.

How can the ideas of social navigation be made central and
be used to inform design of on-line food stores? One trail
that we can follow is to recommend recipes using
collaborative filtering techniques (Resnick, 1997). Recipes
are interesting accumulated pieces of knowledge in this
context. Through which recipes we cook from we convey a
lot of information about our personality, which culture we
belong to, our habits, etc.

Making recommendations on which food to buy based on
recommending recipes is an interesting functionality in
itself. Imagine that we on top of that add accumulation of
user behaviour so that we understand which groups are
most likely to choose which recipes. We have designed
such a system that works as follows: as a (by the system)
known user logs onto the system, it will put up a
recommended recipe. This recipe is the highest ranking
recipe at that point in time, for the category of users to
which the user belongs. The user can add the recipe to

his/her shopping basket, which in turn adds the ingredients
from the recipe to the list of items that will be delivered to
their doorstep. The user can then ask for the next-best
recipe that fits with his/her category of users - much in the
same way as Amazon.com recommendations ("other people
who bought this book also bought these books"). The
recommended recipe will be chosen by the system on the
basis of three different characteristics that the user can
manipulate: user groups, the category of food (Italian, Thai,
etc.), and any particular ingredient that should be included
(shrimp, beef, etc).

The rest of this paper will describe the design of our on-line
food store in more detail. We start off by taking a closer
look on how our recommender system works and then move
on to discuss some additional functionality that may be
feasible to add. Finally we finish it off by putting it all
together in an imaginary user interface.

A MIXED APPROACH
A common problem with existing recommender systems,
such as, GroupLens (Konstan et al., 1996), Firefly
(Shardanand and Maes, 1995), and Phoakes (Terveen et al.,
1997), is that they give little or no feedback to a user on
what user group they belong to, or what user groups a
recommendation is built upon. Since recommender systems
base their recommendations on what other similar users
have done in the past we believe that this is a very
important piece of information, that should be provided to
the user. A problem is of course the rather complex task of
automating “labelling” of user-groups. For instance, it
would be extremely difficult for the Firefly system to label
a cluster of users as “reggae lovers with a flavour of ska”.
However, if this could be done we would get a much richer
recommender system. Imagine using the Phoaks system and
getting information on what type of users recommend
certain links. So, for example, an expert user would
probably not follow links the novices often recommend.

Our solution to the labelling problem is to put an "editor"
back into the loop. The editor will examine the clusters of
users (based on which recipes they have chosen) and
"name" those with fuzzy names that convey somewhat of
their content: "vegetarians", "light food eaters", "spice
lovers", etc.

Labelling of user groups not only tell something abut the
user’s own group, but also give information about other

user groups. This will allow a user to not only navigate
from the highest ranked piece of information to the lowest
(based on his/her user group), but also to navigate among
groups of users. In the recipe domain this seems like a
sensible idea; a recipe that is rather low ranked because the
user is classified as a “meat lover” can still be the recipe to
choose since it is highly ranked for “thai food lovers”.

The recommended recipe will be chosen on the basis of
three different characteristics that the user can manipulate:
user groups, the category of food (Italian, Thai, etc.), and
any particular ingredients that should be included (shrimp,
beef, etc). The idea is that the collection of user groups will
evolve over time as the editor finds more and more groups
of users.

Imagine we have the following scenario; in our
recommender system there are currently five user groups,
five categories, and four ingredients (see Figure 1). A user
tells the system that s/he wants recipes based on what meat
lovers think, based on the oriental category, and with the
ingredient curry (the user could herself be classified as a
vegetarian). The system will create a list of recipes (not
visible to the user) based on what meat lovers have chosen
in the category oriental with the ingredient curry. The
system then ranks the list according to the user’s own group
(vegetarian). Since vegetarians have previously chosen only
one recipe in the list this will be the highest ranking, all
others will be equally ranked. The user can now start to
traverse the list based on his/her group, or more
interestingly chose another user group to base the ranking
upon (e.g. Thai lovers). Also, imagine the “not so spicy”
group have never chosen any of the recipes in the list. It
will therefore not be possible to rank the list according to
that group.

In this way, a user can try out being a vegetarian, or a
member of some other user group, for a period of time. A
user’s group is of course in no way static; if a user
consistently chooses recipes based on what vegetarians like,
s/he will gradually move towards the vegetarian user group.

Our solution will provide the users with more insight into
the social trails of their own actions as well as other users'
actions that have lead to the recommendations they finally
get. It also provides some insight into the inner workings of
the recommender system.

ADDING MORE SOCIAL NAVIGATION TO OUR STORE
Based on our underlying recommender system design it is
possible to give more clues about the character of a specific
recipe, thereby making it easier for users to decide whether
they like it or not. Also, we can find more interesting ways
to navigate among recipes not based on the recommended
list. In the following section we will discuss three additional
features that we add to our recipe store: more from the same
source, user comments, and overall ranking.

In the introduction we mentioned that the recipes we cook
from tells a lot about ourselves. Something that we did not
mention is the fact that the recipes we choose are often
recommended to us by other people that we trust. It is often
the case that we go to the same source when we search for
recipes, especially when we want to try out something new
that we have never cooked before. Therefore each
recommended recipe is attached with a pointer to other
recipes from the same source (e.g. a person or a cookbook).
To this we add two forms of readware (Hill et al., 1992) to
each recipe. Users have the option to both comment on- and
rate recipes. The rating will be anonymous, so a user will
just see a mean of all users’ ratings of a recipe. The
comments, on the other hand, will not be anonymous, so a
user can see who wrote what.

Finally we are experimenting with different forms of real-
time awareness of other users. One approach that we have
discussed is to base our shop on a weekly planner, which is
visible to all other users. Instead of shopping by a single
recipe at a time, a user builds up a weekly schedule on what
to eat for breakfast, lunch, and dinner. So, whenever a user
enters the store s/he can check someone else’s schedule for
inspiration, and if the other user is online, maybe even start
a real time chat with him/her.

PUTTING IT ALL TOGETHER
Now, how do we merge the pieces outlined above into one
coherent interface? First of all we think that it is extremely
important that all functionality is accessible from a single
frame, e.g. the user should at all times be able to access all
functionality without having to step through several screens.
Secondly, we feel that it is important with an interface that
is intuitive to the user. However, at this stage we are just
starting to create a very sketchy user interface, and we do
not claim to have found the optimal solution to this
problem. Thirdly, we want to experiment with different
ways of visualising user groups, not only using text but also
characters that represent, for instance, vegetarians and meat
lovers. In figure 2. the first design of the user interface is
presented.

Meat Lovers

Thai Lovers

Pasta Lovers

Vegetarians

Not so spicy

Fish

Oriental

Italian

Red Meat

Chicken

Rice

Spaghetti

Curry

Tomatoes

Figure 1. User groups, categories, and ingredients
respectively

Character Category Ingredients

User
rankings Comments

More Recipes of...

More from...

New
s

1 x ---------marinating--------
- 2 lb Headless shrimp

 1/2 ts Hot chili sauce
 1 x ----------cooking---------
--
 4 ea Large garlic cloves
 2 ea Small red onions
 1 tb Dark soya sauce
 3 tb Oil

Assam Spicy Shrimp

Fish
Oriental
Italian
Red Meat
Chicken

Rice
Spaghetti
Curry
Tomatoes

Meat Lovers
Thai Lovers
Pasta Lovers
Vegetarians
Not so spicy

Rec
1Rec
2Rec
3...

Everything

User groups that chose
this recipe

MARINATING: Break tamarind apart, place in a small saucepan with
water.
 Simmer, covered, for about 10 minutes or until pasty coating separates
from
 seeds. Press through a sieve or food mill to extract all pulp and soupy
 liquid. Discard seeds. Rinse shrimps thoroughly, pat dry and marinate fro
 1 hour with 1 tablespoon of this tamarind liquid, the oyster sauce and hot
 chili sauce. COOKING: Meanwhile, cut young ginger into toothpick-
sized
 slivers. If using mature ginger, peel and sliver. Peel and sliver garlic.
 Place blachan in a non-stick pan and heat gently fro 3 to 4 minutes to
 develop the flavors. Pell and cut red onions into wedges. Combine oyster,
 soy and chili sauces with blachan; stir into remaining tamarind liquid.
 Heat a large wok over high heat. When a drop of water sizzles
immediately

Regular Search:

Figure 2. The first design of the interface.

CONCLUSION
In this paper we have tried to present a new and exciting
approach to building a recommender system. The key
feature that we want to stress is the use of labels for
different clusters of users. When the user understands what
sort of user that the system classifies him/her as, it becomes
easier to understand why some information gets high ratings
and some information gets low ratings. Also when the
recommender system allows a user to navigate among
labeled clusters of users, new and interesting ways of

choosing recipes may emerge. Finally, as a side effect of
our system, we are actually changing the way people do on-
line shopping of food: from shopping groceries to shopping
recipes.

REFERENCES
1. Hill, W, Hollan, J, Wroblewski, D, McCandless, T

(1992). Edit wear and read wear. Human factors in
computing systems, 3-9.

2. Konstan, J, Miller, B, Maltz, D, Herlocker, J, Gordon,
L, Riedl, J (1997). GroupLens applying collaborative
filtering to Usenet news. Commun. ACM 40(3), 77-87.

3. Resnick, P, and Varian, H (1997). Recommender
Systems. Communications of the ACM, Vol. 40, No. 3.

4. Shardanand, U, Maes, P (1995). Social information
filtering: algorithms for automating "word of mouth".
Human factors in computing systems, 210-217.

5. Terveen, L. G., Hill, W, Amento, B, McDonald, D,
Creter, J, (1997). Building Task-Specific Interfaces to
High Volume Conversational Data. Human factors in
computing systems, 1997, 226-233.

